Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Number 5, September-October 2000
Page(s) 471 - 483
DOI https://doi.org/10.2516/ogst:2000035
Published online 01 December 2006
  • Lowe, D.R. (1982) Sediment Gravity Flows II: Depositional Models with Special Reference to the Deposits of High Density Turbidity Currents. Jour. Sediment. Petrol., 52, 279-297. [Google Scholar]
  • Bouma, A.H., Normark, W.R. and Barnes, N.E. (1985) Sedimentary, Tectonic, and Sea-Level Controls, Springer- Verlag, New York. [Google Scholar]
  • Einsele, G. (1991) Submarine Mass Flow Deposits and Turbidites, in Cycles and Events in Stratigraphy, Einsele, G., Ricken, W. and Seilacher, A. (eds.), 2nd ed., Springer- Verlag, Berlin, 313-339. [Google Scholar]
  • Simpson, J.E. (1982) Gravity Currents in the Laboratory Atmosphere and Ocean. Annu. Rev. Fluid Mech., 14, 213-234. [CrossRef] [Google Scholar]
  • Hopfinger, E.J. (1983) Snow Avalanche Motion and Related Phenomena. Annu. Rev. Fluid Mech., 15, 47-76. [CrossRef] [Google Scholar]
  • Hermann, F., Issler, D. and Keller, S. (1993) Numerical Simulations of Powder-Snow Avalanches and Laboratory Experiments on Turbidity Currents, in “Pierre Beghin” International Workshop on Rapid Gravitational Mass Movements, CEMAGREF, Grenoble. [Google Scholar]
  • Sampl, P. (1993) Current Status of the AVL Avalanche Simulation Model—Numerical Simulation of Dry Snow Avalanches, in “Pierre Beghin” International Workshop on Rapid Gravitational Mass Movements, CEMAGREF, Grenoble. [Google Scholar]
  • Naaim, M. (1995) Modélisation numérique des avalanches aérosols. La Houille Blanche, 6, 5, 56-62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Delinger, R.P. (1987) A Model for Generation of Ash Clouds by Pyroclastic Flows, with Application to the 1980 Eruptions at Mount St. Helens, Washington. Jour. Geophys. Res. B., 92, 10284-10298. [CrossRef] [Google Scholar]
  • Valentine, G.A. and Wohletz, K.H. (1989) Numerical Models of Pilinian Eruption Columns and Pyroclastic Flows. Jour. Geophys. Res. B., 94, 1867-1887. [CrossRef] [Google Scholar]
  • Mulder, T. and Syvitski, J.P.M. (1994) Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. Jour. of Geol., 103, 285-299. [CrossRef] [Google Scholar]
  • Mulder, T.,Savoye, B.,Syvitski, J.P.M. and Cochonnat, P. (1996) Origine des courants de turbidité enregistrés à l’embouchure du Var en 1971. C. R. Acad. Sci. Paris, Series IIa, 322, 301-307. [Google Scholar]
  • Mulder, T.,Syvitski, J.P.M. and Skene, K.I. (1998) Modeling of Erosion and Deposition by Turbidity Currents Generated at River Mouths. Jour. Sedim. Res., 68, 1, 124-137. [CrossRef] [Google Scholar]
  • Benjamin, T.B. (1968) Gravity Currents and Related Phenomena. Jour. Fluid Mech., 31, 209-248. [CrossRef] [Google Scholar]
  • Middleton, G.V. and Hampton, M.A. (1976) Subaqueous Sediment Transport and Deposition by Sediment Gravity Flows, in Marine Sediment Transport and Environmental Management, Stanley, D.J. and Swift, J.P. (eds.), John Wiley, New York, 197-218. [Google Scholar]
  • Ravenne, C. and Beghin, P. (1983) Apport des expériences en canal à l’interprétation sédimentologique des dépôts de cônes détritiques sous-marins. Revue de l’Institut français du pétrole, 42, 5, 529-553. [Google Scholar]
  • Ravenne, C. and Beghin, P. (1984) Modélisation tridimensionnelle des écoulements turbides. Institut français du pétrole, ref. 32665. [Google Scholar]
  • Laval, A. (1988) Modélisation d’écoulements de type bouffée de densité ; Application à l’interprétation des dépôts turbiditiques. PhD Thesis, Université Bordeaux 1. [Google Scholar]
  • Laval, A.,Cremer, M.,Beghin, P. and Ravenne, C. (1988) Density Surges: Two-Dimensional Experiments. Sedimentology, 35, 73-84. [CrossRef] [Google Scholar]
  • Piper, D.J.W. and Savoye, B. (1993) Processes of Late Quaternary Turbidity Current Flow and Deposition on the Var Deep-Sea Fan, North-West Mediterranean Sea. Sedimentology, 40, 557-582. [CrossRef] [Google Scholar]
  • Heezen, B.C. and Ewing, M. (1952) Turbidity Currents and Submarine Slumps and the 1929 Grand Banks Earthquakes. Am. Jour. Sci., 250, 849-873. [CrossRef] [Google Scholar]
  • Heezen, B.C., Ericson, D.B and Ewing, M. (1954) Further Evidence for a Turbidity Current Following the 1929 Grand Banks Earthquake. Deep-Sea Res., 1, 193-202. [Google Scholar]
  • Komar, P.D. (1971) Hydraulic Jumps in Turbidity Currents. Bull. Geol. Soc. Am., 82, 1477-1488. [CrossRef] [Google Scholar]
  • Allen, J.R.L. (1971) Mixing at Turbidity Currents Heads, and its Geological Implications. Jour. Sediment. Petrol., 41, 97-113. [Google Scholar]
  • Hampton, M. (1972) The Role of Subaqueous Sediment Flow in the Generation of Turbidity Currents. Jour. Sediment. Petrol., 42, 775-793. [Google Scholar]
  • Ravenne, C. and Beghin, P. (1982) Apport des expériences en canal à l’interprétation sédimentologique des dépôts de cônes détritiques sous-marins. Institut français du pétrole, ref. 30367. [Google Scholar]
  • Mulder, T. (1993) La vitesse du courant de turbidité de 1979 à Nice : apports de la modélisation. C. R. Acad. Sci. Paris, Series IIa, 317, 1449-1455. [Google Scholar]
  • Shanmugam, G.,Lehtonen, L.R.,Straume, T.,Syvertsen, S.E.,Hodgkinson, R.J. and Skibeli, M. (1994) Slump and Debris Flow Dominated Upper Slope Facies in Cretaceous of Norwegian and Northern North Seas (61-67° N): Implications for Sand Distribution. AAPG Bulletin, 78, 6, 910-937. [Google Scholar]
  • Pickering, K.T., Hiscott, R.N. and Hein, F.J. (1989) Deep Marine Environments: Clastic Sedimentation and Tectonic, Unwin Hyman, London. [Google Scholar]
  • Hugot, A. (1997) Modélisation des processus de sédimentation gravitaires. Rhéologie des debris-flows. Institut français du pétrole, ref. 43716. [Google Scholar]
  • Middleton, G.V. (1967) Experiments on Density and Turbidity Currents: III. Deposition of Sediment. Can. Jour. Earth Sci., 4, 475-505. [CrossRef] [Google Scholar]
  • Middleton, G.V. and Hampton, M.A. (1973) Sediments Gravity Flows: Mechanics of Flow and Deposition, in Turbidity and Deep Water Sedimentation, Middleton, G.V. and Bouma, A.H. (eds.), Pacific Section SEPM, 1-38. [Google Scholar]
  • Lowe, D.R. (1976) Grain Flow and Grain Flow Deposits. Jour. Sediment. Petrol., 46, 188-199. [Google Scholar]
  • Hugot, A. (1996) Modélisation des processus de sédimentation gravitaires. Revue bibliographique et analyse. Mémoire de DEA, Université Pierre et Marie Curie-Institut français du pétrole, ref. 43294. [Google Scholar]
  • Middleton, G.V. (1966) Experiments on Density and Turbidity Currents: I. Motion of the Head. Can. Jour. Earth Sci., 3, 523-546. [Google Scholar]
  • Middleton, G.V. (1966) Small Scales Models of Turbidity Currents and the Criterion for Auto-Suspension. Jour. Sediment. Petrol., 36, 202-208. [Google Scholar]
  • Daly, R.A. (1936) Origin of Submarine Canyons. Am. Jour. Sci. Ser. 5, 31, 401-420. [CrossRef] [Google Scholar]
  • Zheng, X.M. and Hill, J.M. (1996) Molecular Dynamics Modeling of Granular Chute Flow: Density and Velocity Profiles. Powder Technology, 86, 219-227. [CrossRef] [Google Scholar]
  • Hinze, J.O. (1960) On the Hydrodynamics of Turbidity Currents. Geologie en Mijnbouw, 39, 18-25. [Google Scholar]
  • Plapp, J.E. and Mitchell, J.P. (1960) A Hydrodynamic Theory of Turbidity Currents. Jour. Geophys. Res., 65, 3, 983-992. [CrossRef] [Google Scholar]
  • Kirwan, A.D.J.,Doyle, L.J.,Bowles, W.D. and Brooks, G.R. (1986) Time-Dependent Hydrodynamic Models of Turbidity Currents Analyzed with Data from Grand Banks and Orleansville Events. Jour. Sediment. Petrol., 56, 379-386. [Google Scholar]
  • Akiyama, J. and Stephan, H. (1985) Turbidity Current with Erosion and Deposition. Jour. Hydraulic Eng., ASCE, 111, 12, 1473-1496. [Google Scholar]
  • Parker, G.,Fukushima, Y. and Pantin, H.M. (1986) Self- Accelerating Turbidity Currents. Jour. Fluid Mech., 171, 145-181. [CrossRef] [Google Scholar]
  • Zeng, J. and Lowe, D.R. (1997) Numerical Simulation of Turbidity Current Flow and Sedimentation: I. Theory. Sedimentology, 44, 67-84. [CrossRef] [Google Scholar]
  • Middleton, G.V. (1966) Experiments on Density and Turbidity Currents: II. Uniform Flow of Density Currents. Can. Jour. Earth Sci., 3, 627-637. [Google Scholar]
  • Komar, P.D. (1977) Computer Simulation of Turbidity Current Flow and the Study of Deep-Sea Channels and Fan Sedimentation, in The Sea, Goldberg, E.D., McCavea, I.N., O’Brien, J.J. and Steele, J.H. (eds.), Vol. 6, Marine Modelling, John Wiley, New York. [Google Scholar]
  • Bowen, A.J.,Normark, W.R. and Piper, D.J.W. (1984) Modelling of Turbidity Currents on Navy Submarine Fan, California Continental Borderland. Sedimentology, 31, 169-185. [CrossRef] [Google Scholar]
  • Beghin, P. (1979) Étude des bouffées bidimensionnelles de densité en écoulement sur pente avec application aux avalanches de neige poudreuse. PhD Thesis, Université scientifique et médicale de Grenoble and Institut national polytechnique de Grenoble. [Google Scholar]
  • Dade, W.B.,Lister, J.R. and Huppert, H.E. (1994) Fine- Sediment Deposition from Gravity Surges on Uniform Slopes. J. Sed. Res., A64, 3, 423-432. [Google Scholar]
  • Ralston, A. and Wilf, H.S. (1965) Méthodes mathématiques pour calculateurs arithmétiques, Dunod, Paris, Chap. 9. [Google Scholar]
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in C, the Art of Scientific Computing, Cambridge University Press, 2nd ed., 707-721 (URL address: http://www.nr.com/). [Google Scholar]
  • Bender, C.M. and Orszag, S.A. (1978) Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics, Mc Graw-Hill. [Google Scholar]
  • Dietrich, E.W. (1982) The Settling Velocity of Natural Particles. Water Resour. Res., 18, 1615-1626. [CrossRef] [Google Scholar]
  • Lee, D.I. (1969) The Viscosity of Concentrated Suspensions. Trans. Soc. Rheology, 13, 273-288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.