Adsorption de l'eau dissoute dans les mélanges supercarburant-alcools en vue de leur stabilisation. Comparaison entre adsorbants classiques et résines échangeuses d'ions
Adsorption of Dissolved Water in Premium-Fuel/Alcohol Blends with a View to Their Stabilization. Comparison Between Conventional Adsorbents and Ion-Exchange Resins
1
Elf France
2
Institut National des Sciences Appliquées
3
INSA
Une réponse possible au problème de la déstabilisation par démixtion des mélanges supercarburant-alcools est l'abaissement de leur teneur en eau par adsorption physique. La forte affinité pour l'eau des résines échangeuses d'ions de type polystyrène sulfonate permet d'envisager leur utilisation dans ce cas spécifique d'application. Le principal intérêt de ce nouveau matériau adsorbant est de pouvoir se régénérer avec des calories de bas niveau (100-120°C). Nous avons donc étudié, du point de vue capacité d'adsorption et cinétique d'adsorption, le comportement de cet adsorbant et comparé ses performances à celles d'adsorbants plus classiques tels que le silicagel, l'alumine et le tamis moléculaire 3 Å. Les formes ioniques de la résine mises en oeuvre sont les formes : K+, Na+ et Mg2+. Sur le plan de la capacité totale d'adsorption, la résine, quelle que soit sa forme ionique, présente des performances supérieures à celles de l'alumine et du silicagel. Seule la forme Mg2+ adsorbe autant d'eau que le tamis moléculaire. L'efficacité de la résine est sensible à la nature de l'alcool du mélange considéré et augmente selon la séquence méthanol < éthanol < tertiobutanol. Du point de vue cinétique, c'est la résine sous forme K+ qui donne les meilleurs résultats ; sa vitesse d'adsorption est près de dix fois supérieure à celle du tamis moléculaire, viennent ensuite la résine sous forme Na+, l'alumine, la résine sous forme Mg2+ et le tamis moléculaire. La résine sous forme K+, qui réalise le meilleur compromis capacité-vitesse d'adsorption, s'avère donc être un adsorbant efficace de l'eau présente dans les mélanges supercarburant-alcools. Cette aptitude est confirmée lors de sa mise en oeuvre en lit fixe, où elle s'avère nettement plus efficace que le tamis moléculaire. Toutefois, son efficacité est limitée à des mélanges renfermant moins de 10% en volume de composés oxygénés.
Abstract
A possible answer to the problem of destabilization by the segregation of premium-fuel/alcohol blends lies in decreasing their water content by physical adsorption. The strong affinity of water for ion-exchange resins of the polystyrene sulfonate type suggests their use for this specific application. The main advantage of this newadsorbent material is that it can be regenerated with low-level heat (100-120°C). We thus investigated the behavior of this adsorbent from the standpoint of its adsorption capacity and adsorption kinetics. Its performances were compared to those of more conventional adsorbents, such as silicagel, alumina and a 3Å molecular sieve. The ionic forms of the resin used are in the form of K+, Na+ and Mg2+. From the standpoint of total adsorption capacity, resin, whatever its ionic form may be, has better performances then alumina and silicagel. Only the Mg2+ form adsorbs as much water as a molecular sieve. The effectiveness of resin is sensitive to the nature of the alcohol in the blend considered and increases via the methanol < ethanol < tert-butanol sequence. From the kinetic standpoint, resin in the K+ form is the one that gives the best results. Its adsorption rate is nearly ten times higher than that of a molecular sieve. Then come resin in the Na+ form, alumina, resin in the Mg2+ form and the molecular sieve. Resin in the K+ form, which achieves the best compromise between adsorption capacity and rate, thus proves to be an effective adsorbent of water present in premium-fuel/alcohol blends. This ability is confirmed when it is implemented in a fixed bed, where it is much more effective than a molecular sieve. However, its effectiveness is limited to blends containing less than 10% volume of oxygenated compounds.
© IFP, 1988