Dossier: Special Issue in Tribute to Yves Chauvin
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 2, March–April 2016
Dossier: Special Issue in Tribute to Yves Chauvin
Article Number E2
Number of page(s) 9
Published online 13 April 2016


This issue of OGST is dedicated to the memory of Yves Chauvin, a major figure of French chemistry who died on January 27, 2015. Yves Chauvin won the Nobel Prize in Chemistry in 2005 and described on this occasion, with characteristic humor, his career and his vision [1]. Yves Chauvin chose chemistry by chance, but was already convinced that it was possible to dive with passion into work, whatever that work was. He expresses regret of not having pursued his studies to a PhD, mentioning that it would have required the selection of a good advisor and a good topic, two rather difficult tasks when one totally lacks experience in these matters. During the two years he spent in industry, Yves Chauvin noted that those in charge were “fearing change” and were wishing above all to reproduce what was done elsewhere — “since we know that it works”. For Yves Chauvin, the goal was rather to develop something new, and to seek what was original and innovative. He noted with finesse that there stands the contradiction of research: one is to rely on prior knowledge gained by predecessors, while standing ready to depart from it “at the right time”. Yves Chauvin joined the Institut Français du Pétrole in 1960 and managed to work on matters that he considered were the most interesting, thus avoiding the well-marked areas, too widely explored, which could only lead to minor improvements.

At that time, the oil refining industry mainly relied on heterogeneous catalysis. Yves Chauvin “naturally” became a specialist of homogeneous catalysis by developing molecular catalysis, from its basic principles to its industrial applications, even introducing it in the refining sector. He demonstrated its advantages in two processes, the first of which, dimersol, based on a nickel catalyst, allowed the dimerization of propylene to isohexene, and the other, alphabutol, used a titanium-based catalyst that allowed the dimerization of ethylene to 1-butene. This work led to the commercialization of more than 100 references of homogeneous catalytic processes (ref. Axens), with production levels which reach in the millions of tons per year. By skillfully combining basic and applied research, Yves Chauvin contributed to the development of many areas of chemistry and catalysis, both on the academic level and in the industrial sector. Yves Chauvin had a taste for difficult issues and he assumed the risks associated with the extrapolation to the industrial scale: “The slightest failure is final but success brings so much happiness that the risk is well worth the attempt”.

In the 70s, the brilliant intuition of Yves Chauvin lead to the discovery of the olefin metathesis reaction mechanism, a series of processes in which molecules containing a carbon-carbon double bond exchange atoms, somewhat in the manner of dancing couples exchanging partners. Yves Chauvin won the Nobel Prize in Chemistry for this reaction, a prize he shared with Robert H. Grubbs and Richard Schrock. These pioneering investigations still impact the entire scientific community, with many industrial benefits, particularly in terms of limiting energy costs and waste release.

In this issue, several articles illustrate the importance and diversity of this exceptional reaction, starting from the transition metals used and their environment (Ru, Mo or W) and extending to various applications (from metathesis of ring-opening polymerization, unsaturated derivatives from vegetable oils, to the metathesis of alkynes) Guzmán et al. [2], Dixneuf et al. [3], Geng Lopez et al. [4], Dey et al. [5], Allouche et al. [6].

By the early 90s, already committed to improving the sustainability of industrial processes, Yves Chauvin opened the way for the two-phase catalysis process in non-aqueous ionic liquids. These media are now experiencing an expanding role in various fields. An example is given by the article of Moura et al. [7] on the separation of light hydrocarbons.

Initiated by Yves Chauvin in France, homogeneous catalysis by transition metals plays a vital role today in the field of olefin oligomerization. Controlling the nature of the ligand and of the transition metal is illustrated in the article by Danopoulos and Braunstein [8].

Convinced that coordination chemistry and homogeneous catalysis were likely to contribute to heterogeneous catalysis and vice versa, Yves Chauvin got involved in the understanding of metal-substrate interactions and the reactivity of species on the solid, to the point of creating a close parallel between homogeneous and heterogeneous catalysis in order to harmonize views and develop a “unifying” language of catalysis. He liked to make inroads in border areas of research such as acid catalysis, in which the concept of weakly basic anions with respect to the proton resonated with the notion of weakly coordinating anions with respect to cationic complexes of transition metals. At the border between homogeneous and heterogeneous, an example is given by HPA, acid catalysts, immobilized on oxide supports (Pinto et al. [9]).

After retiring from the IFP in 1995, Yves Chauvin continued to work at the University of Lyon where he was welcomed in the laboratory of Jean-Marie Basset [10], who admired his scientific virtuosity tinted by a great humility. Philippe Sautet [11] writes about his vision and passion for chemistry. Bernard Meunier, president of the Academy of Sciences, describes his intuition, creativity and loyalty. Hélène Olivier-Bourbigou not only pays tribute to the talent of Yves Chauvin, always ahead of his time, but also to his humanity that more than ever set an example today. “I’ve always known him passionate”, she says, “about science and about novel concepts, constantly seeking to share his curiosity and enthusiasm. I have been very fortunate to be part of his close associates and share great moments in science and friendship”. Some also say that Yves Chauvin had the rare characteristic of mastering the fundamentals of chemistry on the basis of rationality and logic, but with a practical and unique aesthetic sense, which he expressed as much in the laboratory as in his garden in the Touraine region. This is the explanation of his intuition, perhaps.

Yves Chauvin, honorary member of the Scientific Council of IFPEN and member of the Academy of Sciences, has kept and even developed his youthful spirit throughout his life. An inspired scientist, endowed with immense culture, and with original and surprising insights, Yves Chauvin leaves an indelible trace in the chemical community, in our minds and in our hearts.


Ce numéro de la revue OGST est dédié à la mémoire d’Yves Chauvin, grande figure de la chimie française disparu le 27 janvier 2015. Yves Chauvin reçoit le Prix Nobel de Chimie en 2005 et retrace à cette occasion [1], avec l’humour qui le caractérisait, son parcours et sa vision des choses. Yves Chauvin choisit la chimie un peu par hasard, mais déjà convaincu qu’il était possible de s’immerger avec passion dans un travail quel que soit ce travail. Il exprime le regret de ne pas avoir poursuivi ses études jusqu’au doctorat tout en mentionnant que cela eut nécessité le choix d’un bon directeur de thèse et d’un bon sujet, deux tâches plutôt difficiles lorsque l’on manque totalement d’expérience. Au cours des deux années qu’il passe dans l’industrie, Yves Chauvin constate que ceux qui le dirigent ont « peur du changement » et souhaitent avant tout reproduire ce qui est fait par ailleurs — « puisqu’on sait que ça marche ». Pour Yves Chauvin, l’objectif était au contraire de faire du neuf, et pour cela d’aller chercher ce qui était original et novateur. Il remarque avec finesse qu’on trouve là toute la contradiction de la recherche : elle consiste à s’appuyer sur les connaissances préalables acquises par les prédécesseurs, tout en se tenant prêt à s’en écarter « au bon moment ». Yves Chauvin rejoint l’Institut Français du Pétrole en 1960 et réussit à travailler sur les sujets qui lui paraissaient les plus intéressants en évitant les domaines bien balisés et trop largement explorés, qui n’étaient alors qu’objets de perfectionnements minimes.

À cette époque, l’industrie du raffinage du pétrole faisait essentiellement appel à la catalyse hétérogène. Yves Chauvin devient alors “naturellement” spécialiste de la catalyse homogène en développant la Catalyse Moléculaire, depuis ses principes fondamentaux jusqu’aux applications industrielles, allant même jusqu’à l’introduire dans le domaine du raffinage. Il en démontre l’intérêt au moyen de deux procédés dont l’un, Dimersol, fondé sur un catalyseur à base nickel, assure la dimérisation du propylène en isohexène, et l’autre, Alphabutol, utilise un catalyseur à base titane et permet la dimérisation de l’éthylène en 1-butène. Ces travaux ont conduit à la commercialisation de plus de 100 références de procédés de catalyse homogène (ref. Axens), avec des niveaux de production qui se chiffrent en millions de tonnes par an. En conjuguant savamment recherche fondamentale et appliquée, Yves Chauvin contribue ainsi au développement de nombreux domaines de la chimie et de la catalyse, tant dans le milieu académique qu’industriel. Yves Chauvin avait le goût des enjeux difficiles et il assumait les risques associés à l’extrapolation à l’échelle industrielle : « Le moindre échec est sans appel mais le succès apporte tant de bonheur que le risque vaut bien qu’on le tente ».

Dès les années 70, l’intuition géniale d’Yves Chauvin le conduit à la découverte du mécanisme de la réaction de métathèse des oléfines, une série de processus au cours desquels des molécules comportant une double liaison carbone-carbone échangent des atomes, un peu à la manière de couples de danseurs échangeant leurs partenaires. Cette réaction aux nombreuses applications vaut à Yves Chauvin le prix Nobel de Chimie qu’il partage avec Robert Grubbs et Richard Schrock. Ces travaux pionniers irriguent aujourd’hui encore l’ensemble de la communauté scientifique, avec de nombreuses retombées industrielles, en particulier en termes de limitation des dépenses énergétiques et de relargage de déchets.

Plusieurs articles de ce numéro viennent illustrer l’importance et la diversité de cette réaction exceptionnelle, depuis les métaux de transition mis en œuvre et leur environnement (Ru, Mo ou W), jusqu’aux applications (métathèse de polymérisation par ouverture de cycle, de dérivés insaturés issus des huiles végétales, à la métathèse des alcynes) Guzmán et al. [2], Dixneuf et al. [3], Geng Lopez et al. [4], Dey et al. [5], Allouche et al. [6].

Dès le début des années 90, déjà très attaché à améliorer la durabilité des procédés industriels, Yves Chauvin ouvre, en pionnier, la voie à la catalyse biphasique dans les liquides ioniques non aqueux. Ces milieux connaissent aujourd’hui un essor considérable dans des domaines très variés. Un exemple est donné par l’article de Moura et al. [7] sur la séparation d’hydrocarbures légers.

Initiée par Yves Chauvin en France, la catalyse homogène par les métaux de transition joue aujourd’hui un rôle primordial dans le domaine de l’oligomérisation des oléfines. Le contrôle de la nature du ligand et du métal de transition est illustré par l’article de Danopoulos et Braunstein [8].

Convaincu que la chimie de coordination et la catalyse homogène étaient susceptibles d’apporter leur contribution à la catalyse hétérogène et vice versa, Yves Chauvin s’investit dans la compréhension des interactions métal-substrat et dans la réactivité des espèces sur le solide, au point de créer un parallèle très étroit entre catalyse homogène et catalyse hétérogène, dans le but d’une harmonisation des points de vue et des langages « d’unification » de la catalyse. Il aimait faire des incursions dans les domaines frontières, comme la catalyse acide où la notion d’anions très faiblement basiques vis-à-vis du proton résonnait avec la notion d’anions faiblement coordinants vis-à-vis des complexes cationiques des métaux de transition. À la frontière entre l’homogène et l’hétérogène, un exemple est donné par les HPA, catalyseurs acides, immobilisés sur des supports oxydes (Pinto et al. [9]).

Après sa retraite de l’IFP en 1995, Yves Chauvin poursuit ses travaux à l’Université de Lyon où il est accueilli dans le laboratoire de Jean-Marie Basset [10], qui admire sa virtuosité scientifique teintée d’une grande humilité. Philippe Sautet [11] raconte sa vision et sa passion pour la chimie. Bernard Meunier, président de l’Académie des sciences, évoque son intuition, sa créativité et sa fidélité. Hélène Olivier-Bourbigou rend hommage non seulement au talent d’Yves Chauvin, toujours en avance sur son temps, mais aussi à son humanité qui a plus que jamais valeur d’exemple aujourd’hui. « Je l’ai toujours connu passionné, » dit-elle, « par la Science et par la nouveauté, cherchant sans cesse à faire partager sa curiosité et son enthousiasme. J’ai eu l’immense chance de faire partie de ses proches collaborateurs et de partager des moments formidables de science et d’amitié ». Certains diront aussi qu’Yves Chauvin possédait la caractéristique rare de maîtriser les principes fondamentaux de la chimie sur la base de la rationalité et de la logique, mais avec un sens pratique et esthétique unique, qu’il exprimait autant au laboratoire que dans son jardin en Touraine. L’explication de son intuition, peut-être.

Yves Chauvin, membre d’honneur du Conseil scientifique d’IFPEN et membre de l’Académie des Sciences, a gardé et même développé sa jeunesse d’esprit tout au long de sa vie. Scientifique inspiré, doté d’une culture, d’une originalité et d’une perspicacité toujours surprenantes, Yves Chauvin laisse une trace indélébile dans la communauté des chimistes, dans nos esprits et dans nos cœurs.

A Personal Tribute to Yves Chauvin

Robert H. Grubbs

Arnold and Mabel Beckman Laboratories for Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, CA 91125 Pasadena, California United States

The olefin metathesis reaction was discovered by accident and was a reaction that was unprecedented in chemistry. This fascinating reaction that scrambled olefins by breaking the strongest bond in the molecule led to many proposed mechanisms for reaction. Yves Chauvin got it right. He proposed a mechanism that required a number of steps that were unknown at the time to provide a simple process for the conversion. Most others had proposed mechanisms that involved the direct interchange between two olefins complexed to a metal center. The Chauvin mechanism required a metal-carbon double bond to react with an olefin in a reversible fashion. His work changed the direction of olefin metathesis and put the field on the path to the success that it has now reached. Who would have guessed in the early days when it was just a process for hydrocarbon conversions that the reaction would be used to produce a highly functionalized molecule that is now a key component in a pharmaceutical for the cure of hepatitis C? It should also be pointed out that Chauvin took catalyst development to the next level and used a well-defined metal-carbon double bonded species to catalyze metathesis. He activated a Fischer carbene complex of tungsten carbonyl with titanium tetrachloride to prepare a catalyst for the polymerization of olefins. After this early foray into metathesis, he moved on to other important commercial reactions of olefins.

Yves Chauvin was a humble man who played down his enormous contributions to catalysis and I was honored to be part of the metathesis team with him.

Richard R. Schrock

Department of Chemistry 6-331 Massachusetts Institute of Technology 77 Massachusetts Ave, MA 02139, Cambridge, Massachusetts United States

The period 1970-1980 was a lively decade for organometallic chemistry, especially chemistry that concerned metal-carbon double and triple bonds. I first heard about olefin metathesis from Earl Muetterties in 1972 when I joined duPont for three years. Like many other organometallic, organic, and polymer chemists, I became excited about the opportunities presented by olefin metathesis and its counterpart, acetylene metathesis, and the challenge of making well-defined catalysts for those reactions. During that decade I became aware of the contributions of Yves Chauvin, and especially his sensible and simple proposal of the mechanism of olefin metathesis in 1971. It is perhaps no surprise from today’s perspective that the mechanism of acetylene metathesis is essentially the same as olefin metathesis, except in a triple bond format. I met Yves late in that decade, but our paths rarely crossed, so I never got to know him well. Of course, I met him again in 2005 in Stockholm and several times thereafter. I enjoyed seeing him gain enthusiasm for his new life after the prize, one which focused on students and education. To me Yves always seemed to be somewhat puzzled by the attention he received. But the attention was justified; he was a talented and perceptive scientist. He also was a modest, gentle, and kind man.


  • Chauvin Y. (2007) Olefin metathesis: The early days (Nobel lecture 2005), Adv. Synth. Catal. 349, 27–33. [CrossRef] (In the text)
  • Guzmán P.E., Piunova V.A., Miyake G.M., Grubbs R.H. (2016) Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether) Monomers Initiated by Ruthenium Carbenes, Oil Gas Sci. Technol. 71, 18. [CrossRef] (In the text)
  • Dixneuf P.H., Bruneau C., Fischmeister C. (2016) Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives, Oil Gas Sci. Technol. 71, 19. [CrossRef] (In the text)
  • Geng Lopez J., Zaranek M., Pawluc P., Gauvin R.M., Mortreux A. (2016) In Situ Generation of Molybdenum-Based Catalyst for Alkyne Metathesis: Further Developments and Mechanistic Insights, Oil Gas Sci. Technol. 71, 20. [CrossRef] (In the text)
  • Dey R., Samantaray M.K., Callens E., Hamieh A., Emwas A.-H.M., Abou-hamad E., Kavitake S., Basset J.-M. (2016) Cationic Tungsten(VI) penta-Methyl Complex: Synthesis, Characterization, and Its Application in Olefin Metathesis Reaction, Oil Gas Sci. Technol. 71, 21. [CrossRef] (In the text)
  • Allouche F., Mougel V., Grüning W., Copéret C. (2016) Synthesis and Reactivity of a Pentacoordinated Thiolate-Based Imido-Alkylidene W(VI) Complexes, Oil Gas Sci. Technol. 71, 22. [CrossRef] (In the text)
  • Moura L., Santini C.C., Gomes M.F.C. (2016) Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids, Oil Gas Sci. Technol. 71, 23. [CrossRef] (In the text)
  • Danopoulos A.A., Braunstein P. (2016) Ligand Control of the Metal Coordination Sphere: Structures, Reactivity and Catalysis, Oil Gas Sci. Technol. 71, 24. [CrossRef] (In the text)
  • Pinto T., Szeto K., Oueslati N., Essayem N., Dufaud V., Lefebvre F. (2016) Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15, Oil Gas Sci. Technol. 71, 25. [CrossRef] (In the text)
  • Basset J.-M. (2015) Yves Chauvin (1930-2015) Nobel prize winner who rearranged carbon-carbon bonds, Nature 519, 159. [CrossRef] [PubMed] (In the text)
  • Sautet P. (2015) A Salute to My Colleague Yves Chauvin, 1930-2015, ACS Catal. 5, 2115. [CrossRef] (In the text)

© S Candel, published by IFP Energies nouvelles, 2016

Licence Creative Commons
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.