Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Near ambient pressure photoelectron spectro-microscopy: from gas–solid interface to operando devices

Matteo Amati, Luca Gregoratti, Patrick Zeller, et al.
Journal of Physics D: Applied Physics 54 (20) 204004 (2021)
https://doi.org/10.1088/1361-6463/abe5e2

Reactivity of TiO2 Nanotube‐Supported Platinum Particles in the CO Oxidation Reaction

S. Krick Calderón, M. Grabau, J. E. Yoo, M. S. Killian, P. Schmuki, H.‐P. Steinrück and C. Papp
ChemCatChem 9 (4) 564 (2017)
https://doi.org/10.1002/cctc.201600913

Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111)

Tongyu Wang and Karsten Reuter
The Journal of Chemical Physics 143 (20) (2015)
https://doi.org/10.1063/1.4936354

Theoretical study of catalytic oxidation of CO on free PdxO2+ (x = 4–6) clusters: size dependent comparison of combustion

Chandan Sahu, Deepanwita Ghosh and Abhijit K. Das
RSC Advances 5 (53) 42329 (2015)
https://doi.org/10.1039/C5RA04700E

CO Oxidation on Pd(100) Versus PdO(101)- $$(\sqrt{5}\times \sqrt{5})R27^{\circ}$$ ( 5 × 5 ) R 27 ∘ : First-Principles Kinetic Phase Diagrams and Bistability Conditions

Max J. Hoffmann and Karsten Reuter
Topics in Catalysis 57 (1-4) 159 (2014)
https://doi.org/10.1007/s11244-013-0172-5

Reactivity and Mass Transfer of Low‐Dimensional Catalysts

Jonas Weissenrieder, Johan Gustafson and Dario Stacchiola
The Chemical Record 14 (5) 857 (2014)
https://doi.org/10.1002/tcr.201402006

Exploring Pretreatment–Morphology Relationships: Ab Initio Wulff Construction for RuO2 Nanoparticles under Oxidising Conditions

Tongyu Wang, Jelena Jelic, Dirk Rosenthal and Karsten Reuter
ChemCatChem 5 (11) 3398 (2013)
https://doi.org/10.1002/cctc.201300168

CO oxidation over ruthenium: identification of the catalytically active phases at near-atmospheric pressures

Feng Gao and D. Wayne Goodman
Physical Chemistry Chemical Physics 14 (19) 6688 (2012)
https://doi.org/10.1039/c2cp40121e

Adsorption of CO on oxygen preadsorbed neutral and charged gas phase Pd4 clusters: A density functional study

Bulumoni Kalita and Ramesh C. Deka
Journal of Computational Chemistry 31 (13) 2476 (2010)
https://doi.org/10.1002/jcc.21541

Reaction Intermediates of CO Oxidation on Gas Phase Pd4 Clusters: A Density Functional Study

Bulumoni Kalita and Ramesh C. Deka
Journal of the American Chemical Society 131 (37) 13252 (2009)
https://doi.org/10.1021/ja904119b

In-silico investigations in heterogeneous catalysis—combustion and synthesis of small alkanes

Oliver R. Inderwildi and Stephen J. Jenkins
Chemical Society Reviews 37 (10) 2274 (2008)
https://doi.org/10.1039/b719149a

3D atom probe study of gaseous adsorption on alloy catalyst surfaces III: Ternary alloys – NO on Pt–Rh–Ru and Pt–Rh–Ir

P.A.J. Bagot, A. Cerezo and G.D.W. Smith
Surface Science 602 (7) 1381 (2008)
https://doi.org/10.1016/j.susc.2008.01.041

CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study

Jutta Rogal, Karsten Reuter and Matthias Scheffler
Physical Review B 77 (15) (2008)
https://doi.org/10.1103/PhysRevB.77.155410

Effect of Surface Nanostructure on Temperature Programmed Reaction Spectroscopy: First-Principles Kinetic Monte Carlo Simulations of CO Oxidation atRuO2(110)

Michael Rieger, Jutta Rogal and Karsten Reuter
Physical Review Letters 100 (1) (2008)
https://doi.org/10.1103/PhysRevLett.100.016105