Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 53
Nombre de pages 10
Publié en ligne 16 août 2021
  • Mokhatab S., Poe W.A. (2012) Handbook of natural gas transmission and processing, 2nd edn., Gulf Professional Publishing, Oxford, UK. [Google Scholar]
  • Mokhatab S., Poe W.A., Mak J.Y. (2019) Handbook of natural gas transmission and processing: Principles and practices, 4th edn., Gulf Professional Publishing, Oxford, UK. [Google Scholar]
  • Aromada S.A., Kvamme B. (2019) Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas, Front. Chem. Sci. Eng. 13, 616–627. [Google Scholar]
  • Vega F., Cano M., Camino S., Fernández L.M.G., Portillo E., Benito Navarrete B. (2018) Solvents for carbon dioxide capture, in: Karamé I., Shaya J., Srour H. (eds), Carbon dioxide chemistry, capture and oil recovery, IntechOpen, London, UK. [Google Scholar]
  • Xu Zh, Wang Sh, Qi G., Liu J., Zhao B., Chen Ch. (2014) CO2 absorption by biphasic solvents: Comparison with lower phase alone, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 5, 851–864. [Google Scholar]
  • Zhang J., Agar D.W., Zhang X., Geuzebroek F. (2011) CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration, Energy Procedia 4, 67–74. [CrossRef] [Google Scholar]
  • Hansen H. (2014) Amines as gas sweetening agents, Master Thesis, Aalborg University, Aalborg, Denmark. [Google Scholar]
  • Benamor A., Kheireddine Aroua M., Aroussi A. (2012) Kinetics of CO2 absorption into aqueous blends of diethanolamine and mthyldiethanolamine, in: Proceedings of the 3rd International Gas Processing Symposium, Qatar, 5–7 March 2012. [Google Scholar]
  • Ghanbarabadi H., Khoshandam B. (2015) Simulation and comparison of Sulfinol solvent performance with Amine solvents in removing sulfur compounds and acid gases from natural sour gas, J. Nat. Gas Sci. Eng. 22, 415–420. [Google Scholar]
  • Jassim M. (2016) Sensitivity analyses and optimization of a gas sweetening plant for hydrogen sulfide and carbon dioxide capture using methyldiethanolamine solutions, J. Nat. Gas Sci. Eng. 36, 175–183. [Google Scholar]
  • Patil P., Malik Z., Jobson M. (2006) Prediction of CO2 and H2S solubility in aqueous MDEA solutions using an extended Kent and Eisenberg model Inst. Chem. Eng. (IChemE), Symp. Ser. 152, 498–510. [Google Scholar]
  • Kazemi A., Malayeri M., Gharibi Kharaji A., Shariati A. (2014) Feasibility study, simulation and economical evaluation of natural gas sweetening processes – Part 1: A case study on a low capacity plant in Iran, J. Nat. Gas Sci. Eng. 20, 16–22. [Google Scholar]
  • Gutierrez J.P., Tarifa E., Erdmann E. (2018) Steady-state energy optimization and transition assessment in a process of CO2 absorption from natural gas, Energy 159, 1016–1023. [Google Scholar]
  • Gutierrez J.P., Liliana Ale Ruiz E., Erdmann E. (2017) Energy requirements, GHG emissions and investment costs in natural gas sweetening processes, J. Nat. Gas Sci. Eng. 38, 187–194. [Google Scholar]
  • Ghanbarabadi H., Karimi Zad Gohari F. (2014) Optimization of MDEA concentration in flow of input solvent to the absorption tower and its effect on the performance of other processing facilities of gas treatment unit in Sarakhs refinery, J. Nat. Gas Sci. Eng. 20, 208–213. [Google Scholar]
  • Zahid U., Al Rowaili F.N., Ayodeji M.K., Ahmed U. (2017) Simulation and parametric analysis of CO2 capture from natural gasusing diglycolamine, Int. J. Greenhouse Gas Control 57, 42–51. [Google Scholar]
  • Kumar Sarker N. (2016) Theoretical effect of concentration, circulation rate, stages, pressure and temperature of single amine and amine mixture solvents on gas sweetening performance, Egypt. J. Pet. 25, 343–354. [Google Scholar]
  • Emmanuel Akinola T., Oko E., Wang M. (2019) Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation, Fuel 236, 135–146. [Google Scholar]
  • Mirfendereski M., Mohammadi T. (2017) Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas–liquid contactors, Chem. Biochem. Eng. Q. 31, 2, 139–144. [Google Scholar]
  • Nejat T., Movasati A., Wood D.A., Ghanbarabadi H. (2018) Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant, Chem. Eng. Res. Des. 133, 40–54. [Google Scholar]
  • Petrucci R.H., Harwood W.S., Herring G.E., Madura J. (2006) General chemistry: Principles and modern application, 9th edn., Pearson/Prentice Hall, Hoboken, NJ. [Google Scholar]
  • Abdulrahman R.K., Sebastine I.M. (2013) Natural gas sweetening process simulation and optimization: A case study of Khurmala field in Iraqi Kurdistan region, J. Nat. Gas Sci. Eng. 14, 116–120. [CrossRef] [Google Scholar]
  • Abdel-Aal K., Aggour M. (2003) Petroleum and gas field processing, CRC Press, New York. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.