Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 22
Nombre de pages 18
DOI https://doi.org/10.2516/ogst/2020098
Publié en ligne 16 mars 2021
  • Aboudheir A., Tontiwachwuthikul P., Chakma A., Idem R. (2003) Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci. 58, 5195–5210. [Google Scholar]
  • Abu-Zahra M.R.M., Shneiders L.H.J., Niederer J.P.M., Feron P.H.M., Versteeg G.F. (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenh. Gas Control. 1, 37–46. [Google Scholar]
  • Afkhamipour M., Mofarahi M. (2013) Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution, Int. J. Greenh. Gas Control. 15, 186–199. [Google Scholar]
  • Afkhamipour M., Mofarahi M. (2014) Sensitivity analysis of the rate-based CO2 absorber model using amine solutions (MEA, MDEA and AMP) in packed columns, Int. J. Greenh. Gas Control. 25, 9–22. [Google Scholar]
  • Agbonghae E.O., Hughes K.J., Ingham D.B., Ma L., Pourkashanian M. (2014) A semi-empirical model for estimating the heat capacity of aqueous solutions of alkanolamines for CO2 capture, Ind. Eng. Chem. Res. 53, 8291–8301. [Google Scholar]
  • Akinola T.E., Oko E., Wang M. (2019) Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation, Fuel 236, 135–146. [Google Scholar]
  • Ali Saleh Bairq Z., Gao H., Huang Y., Zhang H., Liang Z. (2019) Enhancing CO2 desorption performance in rich MEA solution by addition of SO42–/ZrO2/SiO2 bifunctional catalyst, Appl. Energ. 252, 113440. [Google Scholar]
  • Ambrose D., Walton J. (1989) Vapor pressures up to their critical temperatures of normal alkanes and 1-alkanols, Pure Appl. Chem. 61, 1395–1403. [Google Scholar]
  • Antoine C. (1888) Tensions of the vapors, new relationship between the voltages and temperatures, Rec. Meet. Acad. Sci. 107, 681–684. [Google Scholar]
  • Arcis H., Ballerat-Busserolles K., Rodier L., Coxam J.-Y. (2011) Enthalpy of solution of carbon dioxide in aqueous solutions of monoethanolamine at temperatures of 322.5 K and 372.9 K and pressures up to 5 MPa, J. Chem. Eng. Data. 56, 3351–3362. [Google Scholar]
  • Billet R., Schultes M. (1999) Prediction of mass transfer columns with dumped and arranged packings, Chem. Eng. Res. Des. 77, 498–504. [Google Scholar]
  • Blauwhoff P.M.M., Versteeg G.F., van Swaaij W.P.M. (1983) A study on the reaction between CO2 and alkanolamines in aqueous solutions, Chem. Eng. Sci. 38, 1411–1429. [Google Scholar]
  • Brian P.L.T., Hurley J.F., Hasseltine E.H. (1961) Penetration theory for gas absorption accompanied by a second order chemical reaction, AIChE J. 7, 226–231. [Google Scholar]
  • Carson J.K., Marsh K.N., Mather A.E. (2000) Enthalpies of solution of carbon dioxide in (water + MEA or DEA or MDEA) and (water +MEA + MDEA) at 298.15 K, J. Chem. Thermodyn. 32, 1285–1296. [Google Scholar]
  • Clarke J.K.A. (1964) Kinetics of absorption of carbon dioxide in monoethanolamine at short contact times, Ind. Eng. Chem. Fundam. 3, 239–245. [Google Scholar]
  • Cullen E.J., Davidson J.F. (1957) Absorption of gas in liquid jet, Trans. Faraday. Soc. 53, 113–120. [Google Scholar]
  • Cussler E.L. (2009) Diffusion-mass transfer in fluid systems, 3rd edn., Cambridge University Press, Cambridge. [Google Scholar]
  • Danckwerts P.V., Sharma M.M. (1966) The absorption of carbon dioxide into solutions of alkalis and amines, Chem. Eng. 10, 244–280. [Google Scholar]
  • Dang H., Rochelle G.T. (2003) CO2 Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water, Sep. Sci. Technol. 38, 337–357. [Google Scholar]
  • DeCoursey W.J. (1982) Enhancement factors for gas absorption with reversible reaction, Chem. Eng. Sci. 37, 1483–1489. [Google Scholar]
  • DeCoursey W.J., Thring R.W. (1989) Effects of unequal diffusivities on enhancement factors for reversible and irreversible reaction, Chem. Eng. Sci. 44, 1715–1721. [Google Scholar]
  • Dugas R.E., Rochelle G.T. (2011) CO2 absorption rate into concentrated aqueous monoethanolamine and piperazine, J. Chem. Eng. Data. 56, 2187–2195. [Google Scholar]
  • Faramarzi L. (2010) Post-combustion capture of CO2 from fossil fuelled power plants, PhD Thesis, Department of Chemical and Bimolecular Engineering, Technical University of Denmark. [Google Scholar]
  • Freguia S., Rochelle G.T. (2003) Modeling of CO2 capture by aqueous monoethanolamine, Am. Inst. Chem. Eng. J. 49, 1676–1686. [Google Scholar]
  • Gaspar J., Fosbøl P.L. (2015) A general enhancement factor model for absorption and desorption systems: A CO2 capture case-study, Chem. Eng. Sci. 138, 203–215. [Google Scholar]
  • Geankoplis C.J. (2003) Transport processes and separation process principles, 4th edn., Prentice-Hall. [Google Scholar]
  • Gheni S.A., Abed M.F., Halabia E.K., Ahmed S.R. (2018) Investigation of carbon dioxide (CO2) capture in a falling film contactor by computer simulation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 43. [Google Scholar]
  • Gilliland E.R., Baddour R.F., Brian P.L.T. (1958) Gas absorption accompanied by a liquid-phase chemical reaction, AIChE J. 4, 223–230. [Google Scholar]
  • Hatta S. (1928) Technical reports, Tohoku Imperial University, Sendai. [Google Scholar]
  • Hikita H., Asai S., Ishikawa H., Honda M. (1977) The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method, Chem. Eng. J. 13, 7–12. [Google Scholar]
  • Hikita H., Asai S., Katsu Y., Ikuno S. (1979) Absorption of carbon dioxide into aqueous monoethanolamine solutions, Am. Inst. Chem. Eng. J. 25, 793–800. [Google Scholar]
  • Hikita H., Asai S., Yano A., Nose H. (1982) Kinetics of absorption of carbon dioxide into aqueous sodium sulfite solutions, AIChE J. 28, 1009–1015. [Google Scholar]
  • Hogendoorn J.A., Vas Bhat R.D., Kuipers J.A.M., Van Swaaij W.P.M., Versteeg G.F. (1997) Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions, Chem. Eng. Sci. 52, 4547–4559. [Google Scholar]
  • Holderbaum T., Gmehling J. (1991) PSRK: a group contribution equation of state based on UNIFAC, Fluid. Phase. Equilib. 70, 251–265. [Google Scholar]
  • Horng S.Y., Li M.H. (2002) Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine, Ind. Eng. Chem. Res. 41, 257–266. [Google Scholar]
  • IPCC (2007) Intergovernmental panel on climate change fourth assessment report: Climate change 2007-mitigation of climate change, Cambridge University Press, Cambridge. [Google Scholar]
  • Jamal A. (2002) Absorption and desorption of CO2 and CO in alkanolamine systems, PhD Thesis, University of British Columbia, Canada. [Google Scholar]
  • Jamal A., Meisen A., Lim C.J. (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor: experimental results and parameter estimation, Chem. Eng. Sci. 61, 6590–6603. [Google Scholar]
  • Jayarathna S.A., Weerasooriya A., Dayarathna S., Eimer D.A., Melaaen M.C. (2013) Densities and surface tensions of CO2 loaded aqueous monoethanolamine solutions with r = (0.2 to 0.7) at T = (303.15 to 333.15) K, J. Chem. Eng. Data. 58, 986–992. [Google Scholar]
  • Jiru Y., Eimer D.A., Wenjuan Y. (2012) Measurements and correlation of physical solubility of carbon dioxide in (monoethanolamine + water) by a modified technique, Ind. Eng. Chem. Res. 51, 6958–6966. [Google Scholar]
  • Kell G.S. (1975) Density, thermal expansivity, and compressibility of liquid water from 0 to 150 C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data. 20, 97–105. [Google Scholar]
  • Khan F.M., Krishnamoorthi V., Mahmud T. (2011) Modeling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications, Chem. Eng. Res. Des. 89, 1600–1608. [Google Scholar]
  • Kim I. (2009) Heat of Reaction and Vapor-Liquid Equilibrium of Post Combustion CO2 Absorbents, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway. [Google Scholar]
  • Kim I., Svendsen H.F. (2007) Heat of absorption of carbon dioxide (CO2) inmonoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions, Ind. Eng. Chem. Res. 46, 5803–5809. [Google Scholar]
  • Ko J.J., Tsai T.C., Lin C.Y. (2001) Diffusivity of nitrous oxide in aqueous alkanolamine solutions, J. Chem. Eng. Data. 46, 160–165. [Google Scholar]
  • Kohl A.L., Nielsen R.B. (1997) Gas purification, 5th edn., Gulf Publishing Co, Houston. [Google Scholar]
  • Kucka L., Kenig E.Y., Górak A. (2002) Kinetics of the gas–liquid reaction between carbon dioxide and hydroxide ions, Ind. Eng. Chem. Res. 41, 5952–5957. [Google Scholar]
  • Kucka L., Richter J., Kenig E.Y., Górak A. (2003) Determination of gas–liquid reaction kinetics with a stirred cell reactor, Sep. Purif. Technol. 31, 163–175. [Google Scholar]
  • Kvamsdal H.M., Rochelle G. (2008) Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine, Ind. Eng. Chem. Res. 47, 867–875. [Google Scholar]
  • Kvamsdal H.M., Jakobsen J.P., Hoff K.A. (2009) Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture, Chem. Eng. Process. 48, 135–144. [Google Scholar]
  • Kvamsdal H.M., Hillestad M. (2012) Selection of model parameter correlations in a rate-based CO2 absorber model aimed for process simulation, Int. J. Greenh. Gas Control. 11, 11–20. [Google Scholar]
  • Last W., Stichlmair J. (2002) Determination of mass transfer parameters by means of chemical absorption, Chem. Eng. Technol. 25, 385–391. [Google Scholar]
  • Li M.H., Lai M.D. (1995) Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-Methyl-1-Propanol + Water), J. Chem. Eng. Data. 40, 486–492. [Google Scholar]
  • Littel R.J., Versteeg G.F., Van Swaaij W.P.M. (1992) Kinetics of CO2 with primary and secondary amines in aqueous solutions-II. Influence of temperature on zwitterion formation and deprotonation rates, Chem. Eng. Sci. 47, 2037–2045. [Google Scholar]
  • Liu F., Fang M., Dong W., Wang T., Xia Z., Wang Q., Luo Z. (2019) Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation, Appl. Energy 234, 468–477. [Google Scholar]
  • Llano-Restrepo M., Araujo-Lopez E. (2015) Modeling and simulation of packed-bed absorbers for post-combustion capture of carbon dioxide by reactive absorption in aqueous monoethanolamine solutions, Int. J. Greenh. Gas Control. 42, 258–287. [Google Scholar]
  • Luo X., Hartono A., Hussain S., Svendsen H.F. (2015) Mass transfer and kinetics of carbon dioxide absorption into loaded aqueous monoethanolamine solutions, Chem Eng Sci. 123, 57–69. [Google Scholar]
  • Luo X., Hartono A., Svendsen H.F. (2012) Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns, Chem. Eng. Sci. 82, 31–43. [Google Scholar]
  • Mathonat C., Majer V., Mather A.E., Grolier J.P.E. (1998) Use of solubility of CO2 in aqueous monoethanolamine solutions, Ind. Eng. Chem. Res. 37, 4136–4141. [Google Scholar]
  • Mehassouel A., Derriche R., Bouallou C. (2018) Kinetics study and simulation of CO2 absorption into mixed aqueous solutions of methyldiethanolamine and hexylamine, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 19. [Google Scholar]
  • Mofarahi M., Khojasteh Y., Khaledi H., Farahnak A. (2008) Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine, Energy 33, 1311–1319. [Google Scholar]
  • Mohammadpour A., Mirzaei M., Azimi A. (2019) Dimensionless numbers for solubility and mass transfer rate of CO2 absorption in MEA in presence of additives, Chem. Eng. Res. Des. 151, 207–213. [Google Scholar]
  • Pandya J.D. (1983) Adiabatic gas absorption and stripping with chemical reaction in packed towers, Chem. Eng. Commun. 19, 343–361. [Google Scholar]
  • Pinsent B.R., Pearson L., Roughton F.J.W. (1956) The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc. 52, 1512–1520. [Google Scholar]
  • Pitzer K.S., Curl R.F. (1957) The thermodynamic properties of fluids, Institution of Mechanical Engineers, London. [Google Scholar]
  • Plaza J.M. (2011) Modeling of carbon dioxide absorption using aqueous monoethanolamine, piperazine and promoted potassium carbonate, PhD Thesis, The University of Texas at Austin, Austin, TX. [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) The properties of gases and liquids, McGraw-Hill, New York. [Google Scholar]
  • Puxty G., Rowland R., Attalla M. (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine, Chem. Eng. Sci. 65, 915–922. [Google Scholar]
  • Reid R.C., Prausntiz J.M., Poling B.E. (1987) The Properties of Gases and Liquids, Mc-Graw Hill, New York. [Google Scholar]
  • Riedel L. (1954) Extension of the theorem of corresponding states. III. Critical coefficient, density of saturated vapor, and latent heat of vaporization, Chem. Ing. Tech. 26, 679–683. [Google Scholar]
  • Sada E., Kumazawa H., Butt M.A. (1978) Solubility and diffusivity of gases in aqueous solutions of amines, J. Chem. Eng. Data 23, 161–163. [Google Scholar]
  • Smith J.M., van Ness H.C., Abbott M.M. (2005) Introduction to chemical engineering thermodynamics, 7th edn., McGraw-Hill, New York. [Google Scholar]
  • Snijder E.D., te Riele M.J.M., Versteeg G.F., Van Swaaij W.P.M. (1993) Diffusion coefficients of several aqueous alkanolamine solutions, J. Chem. Eng. Data 38, 475–480. [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197–1203. [Google Scholar]
  • Sonderby T.L., Carlsen K.B., Fosbol P.L., Kiorboe L.G., Von Solms N. (2013) A new pilot absorber for CO2 capture from flue gases: measuring and modeling capture with MEA solution, Int. J. Greenh. Gas Control. 12, 181–192. [Google Scholar]
  • Treybal R.E. (1969) Adiabatic gas absorption and stripping in packed towers, Ind. Eng. Chem. 61, 36–41. [Google Scholar]
  • Van Krevelen D.W., Hoftijzer P.J. (1948) Kinetics of gas–liquid reactions. Part I. General theory, Recl. Trav. Chim. Pays-Bas. 67, 563–586. [Google Scholar]
  • Van Swaaij W.P.M., Versteeg G.F. (1992) Mass transfer accompanied with complex reversible chemical reactions in gas-liquid systems: an overview, Chem. Eng. Sci. 47, 3181–3195. [Google Scholar]
  • Van Wijngaarden G.D.L., Versteeg G.F., Beenackers A.A.C.M. (1986) Mass-transfer enhancement factors for reversible gas-liquid reactions: comparison of DeCoursey’s and Onda’s methods, Chem. Eng. Sci. 41, 2440–2442. [Google Scholar]
  • Versteeg G.F., Kuipers J.A.M., Van Beckum F.P.H., Van Swaaij W.P.M. (1989) Mass transfer with complex reversible chemical reactions-I. Single reversible chemical reaction, Chem. Eng. Sci. 44, 2295–2310. [Google Scholar]
  • Versteeg G.F., van Dijck L.A.J., van Swaaij W.P.M. (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions: an overview, Chem. Eng. Commun. 144, 113–158. [Google Scholar]
  • Wang J., Deng S., Sun T., Xu Y., Li K., Zhao J. (2019) Thermodynamic and cycle model for MEA-based chemical CO2 absorption, Energy Procedia. 158, 4941–4946. [Google Scholar]
  • Wang T., Yu W., Liu F., Fang M., Farooq M., Luo Z. (2016) Enhanced CO2 absorption and desorption by MEA based nanoparticle suspensions, Ind. Eng. Chem. Res. 55, 7830–7838. [Google Scholar]
  • Weast R.C. (1984) Handbook of Chemistry and Physics, 65th edn., CRC. [Google Scholar]
  • Weiland R.H., Dingman J.C., Cronin D.B., Browning G.J. (1998) Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends, J. Chem. Eng. Data. 43, 378–382. [Google Scholar]
  • Wellek R.M., Brunson R.J., Law F.H. (1978) Enhancement factors for gas-absorption with second-order irreversible chemical reaction, Can. J. Chem. Eng. 56, 181–186. [Google Scholar]
  • Wilke C.R. (1950) Diffusional properties of multicomponent gases, Chem. Eng. Prog. 46, 95–104. [Google Scholar]
  • Wu Y., Zhou Q., Chan C.W. (2010) A comparison of two data analysis techniques and their applications for modeling the carbon dioxide capture process, Eng. Appl. Artif. Intell. 23, 1265–1276. [Google Scholar]
  • Yeramian A.A., Gottifredi J.C., Ronco J.J. (1970) Mass transfer with homogeneous second order irreversible reaction a note on an explicit expression for the reaction factor, Chem. Eng. Sci. 25, 1622–1625. [Google Scholar]
  • Ying J., Eimer D.A. (2012) Measurements and correlations of diffusivities of nitrous oxide and carbon dioxide in monoethanolamine + water by Laminar liquid jet, Ind. Eng. Chem. Res. 51, 16517–16524. [Google Scholar]
  • Ying J., Eimer D.A. (2013) Determination and measurements of mass transfer kinetics of CO2 in concentrated aqueous monoethanolamine solutions by a stirred cell, Ind. Eng. Chem. Res. 52, 2548–2559. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.