Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 14
Nombre de pages 15
DOI https://doi.org/10.2516/ogst/2020097
Publié en ligne 5 février 2021
  • Sloan E.D. (2008) Clathrate hydrates of natural gases, CRC Press, USA. [Google Scholar]
  • Li X.S., Xu C.G., Zhang Y., Ruan X.K., Li G., Wang Y. (2016) Investigation into gas production from natural gas hydrate: A review, Appl. Energy 172, 286–322. [Google Scholar]
  • Bai Y., Yang H., Du Y., Zhao Y. (2013) The sensitivity analysis of scaling criteria in gas hydrate reservoir physical simulation, Energy Convers. Manage. 67, 138–144. [Google Scholar]
  • Zhao J., Liu D., Yang M., Song Y.C. (2014) Analysis of heat transfer effects on gas production from methane hydrate by depressurization, Int. J. Heat Mass Transfer 77, 529–541. [CrossRef] [Google Scholar]
  • Feng Y., Chen L., Suzuki A., Kogawa T., Okajima J., Komiya A., et al. (2019) Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method, Energy Convers. Manage. 184, 194–204. [Google Scholar]
  • Xia Z., Wang X., Zhang X. (2020) Investigation of the hydrate reservoir production under different depressurization modes, Mar. Georesour. Geotechnol. 38, 8, 1002–1012. [Google Scholar]
  • Kurihara M., Sato A., Funatsu K., Ouchi H., Yamamoto K., Numasawa M., Ebinuma T., Narita H., Masuda Y., Dallimore S.R., Wright F., Ashford D. (January 1 2010) Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada, International Oil and Gas Conference and Exhibition in China, Society of Petroleum Engineers, pp. 1–24. [Google Scholar]
  • Yamamoto K., Terao Y., Fujii T., Ikawa T., Seki M., Matsuzawa M., Kanno T. (2014) Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough, Offshore Technology Conference, Society of Petroleum Engineers, pp. 1–11. [Google Scholar]
  • Li J., Ye J., Qin X., Qiu H., Wu N., Lu H., et al. (2018) The first offshore natural gas hydrate production test in South China Sea, China Geology 1, 1, 5–16. [CrossRef] [Google Scholar]
  • Myshakin E.M., Gaddipati M., Rose K., Anderson B.J. (2012) Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 313 site, northern Gulf of Mexico, Mar. Pet. Geol. 34, 1, 169–185. [Google Scholar]
  • Sun Y., Ma X., Guo W., Jia R., Li B. (2019) Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea, J. Pet. Sci. Eng. 181, 1–13. [Google Scholar]
  • Yu T., Guan G., Abudula A., Yoshida A., Wang D., Song Y. (2019) Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells, Energy 166, 834–844. [Google Scholar]
  • Ohgaki K., Takano K., Sangawa H., Matsubara T., Nakano S. (1996) Methane exploitation by carbon dioxide from gas hydrates – phase equilibria for CO2-CH4 mixed hydrate system, J. Chem. Eng. Jpn. 29, 3, 478–483. [Google Scholar]
  • Lee Y., Choi W., Shin K., Seo Y. (2017) CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration, Energy Convers. Manage. 150, 356–364. [Google Scholar]
  • Gharasoo M., Babaei M., Haeckel M. (2019) Simulating the chemical kinetics of CO2-methane exchange in hydrate, J. Natural Gas Sci. Eng. 62, 330–339. [Google Scholar]
  • Shagapov V.S., Khasanov M.K., Musakaev N.G., Duong N.H. (2017) Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide, Int. J. Heat Mass Trans. 107, 347–357. [Google Scholar]
  • Khasanov M.K., Stolpovsky M.V., Gimaltdinov I.K. (2019) Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate, Int. J. Heat Mass Trans. 132, 529–538. [Google Scholar]
  • Koh D.-Y., Ahn Y.-H., Kang H., Park S., Lee J.Y., Kim S.-J., Lee J., Lee H. (2015) One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas, AIChE J. 61, 3, 1004–1014. [Google Scholar]
  • Yang J., Okwananke A., Tohidi B., Chuvilin E., Maerle K., Istomin V., Bukhanov B., Cheremisin A. (2017) Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration, Energy Convers. Manage. 136, 431–438. [Google Scholar]
  • Li B., Xu T., Zhang G., Guo W., Liu H., Wang Q., et al. (2018) An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 exchange, Energy Convers. Manage. 165, 738–747. [Google Scholar]
  • Sun Y.F., Wang Y.F., Zhong J.R., Li W.Z., Li R., Cao B.J., Kan J.Y., Sun C.Y., Chen G.J. (2019) Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode, Appl. Energy 240, 215–225. [Google Scholar]
  • Merey S., Al-Raoush R.I., Jung J., Alshibli K.A. (2018) Comprehensive literature review on CH4-CO2 exchange in microscale porous media, J. Pet. Sci. Eng. 171, 48–62. [Google Scholar]
  • Okwananke A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., Cheremisin A. (2018) Enhanced depressurization for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen, J. Chem. Thermodyn. 117, 138–146. [Google Scholar]
  • Boswell R., Schoderbek D., Collett T.S., Ohtsuki S., White M., Anderson B.J. (2016) The Ignik Sikumi field experiment, Alaska North Slope: design, operations, and implications for CO2–CH4 exchange in gas hydrate reservoirs, Energy Fuels 31, 1, 140–153. [Google Scholar]
  • Hou J., Xia Z., Li S., Zhou K., Lu N. (2016) Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm, Energy 96, 581–591. [CrossRef] [Google Scholar]
  • CMG STARS® (2010) Advanced process and thermal reservoir simulator, Computer Modelling Group Ltd., Calgary, Alberta, Canada. [Google Scholar]
  • Anderson B.J., Kurihara M., White M.D., Moridis G.J., Wilson S.J., Pooladi-Darvish M., Gaddipati M., Masuda Y., Collett T.S., Hunter R.B., Narita H., Rose K., Boswell R. (2011) Regional long-term production modeling from a single well test, Mount Elbert gas hydrate stratigraphic test well, Alaska North slope, Mar. Pet. Geol. 28, 2, 493–501. [Google Scholar]
  • Giraldo C., Klump J., Clarke M., Schicks J. (2014) Sensitivity analysis of parameters governing the recovery of methane from natural gas hydrate reservoirs, Energies 7, 4, 2148–2176. [Google Scholar]
  • Walsh M.R., Hancock S.H., Wilson S.J., Patil S.L., Moridis G.J., Boswell R., Collett T.S., Koh C.A., Sloan E.D. (2009) Preliminary report on the commercial viability of gas production from natural gas hydrates, Energy Econ. 31, 5, 815–823. [Google Scholar]
  • Zatsepina O., Pooladi-Darvish M., Hong H. (2011) Behavior of gas production from Type III hydrate reservoirs, J. Natural Gas Sci. Eng. 3, 3, 496–504. [Google Scholar]
  • Zatsepina O., Pooladi-Darvish M. (2012) Storage of CO2 as hydrate in depleted gas reservoirs, SPE Reserv. Evalu. Eng. 15, 1, 98–108. [Google Scholar]
  • Hou J., Ji Y., Zhou K., Liu Y., Wei B. (2018) Effect of hydrate on permeability in porous media: Pore-scale micro-simulation, Int. J. Heat Mass Transfer 126, 416–424. [Google Scholar]
  • White M.D., Wurstner S.K., McGrail B.P. (2011) Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection, Mar. Pet. Geol. 28, 2, 546–560. [Google Scholar]
  • Anderson B., Boswell R., Collett T.S., Farrell H., Ohtsuki S., White M. (2014) Review of the findings of the Iġnick Sikumi CO2-CH4 gas hydrate exchange field trial, Society of Petroleum Engineers, pp. 1–11. [Google Scholar]
  • Myshakin E.M., Ajayi T., Anderson B.J., Seol Y., Boswell R. (2016) Numerical simulations of depressurization-induced gas production from gas hydrates using 3-D heterogeneous models of L-Pad, Prudhoe Bay Unit, North Slope Alaska, J. Natural Gas Sci. Eng. 35, 1336–1352. [Google Scholar]
  • Kang S.P., Lee H., Ryu B.J. (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran), J. Chem. Thermodyn. 33, 5, 513–521. [Google Scholar]
  • Kim H.C., Bishnoi P.R., Heidemann R.A., Rizvi S.S. (1987) Kinetics of methane hydrate decomposition, Chem. Eng. Sci. 42, 7, 1645–1653. [Google Scholar]
  • Yin Z., Chong Z.R., Tan H.K., Linga P. (2016) Review of gas hydrate dissociation kinetic models for energy recovery, J. Natural Gas Sci. Eng. 35, 1362–1387. [Google Scholar]
  • Shahbazi A. (2010) Mathematical modeling of gas production from gas hydrate reservoirs, PhD Thesis, University of Calgary, Canada. [Google Scholar]
  • Uddin M., Coombe D., Law D., Gunter B. (2008) Numerical studies of gas hydrate formation and decomposition in a geological reservoir, J. Energy Resour. Technol. 130, 3, 1–14. [Google Scholar]
  • Clarke M., Bishnoi P.R. (2001) Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition, Can. J. Chem. Eng. 79, 1, 143–147. [Google Scholar]
  • Clarke M., Bishnoi P.R. (2004) Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis, Chem. Eng. Sci. 59, 14, 2983–2993. [Google Scholar]
  • Adisasmito S., Frank R.J. III, Sloan E.D. Jr (1991) Hydrates of carbon dioxide and methane mixtures, J. Chem. Eng. Data 36, 1, 68–71. [Google Scholar]
  • Collett T.S., Boswell R., Lee M.W., Anderson B.J., Rose K., Lewis K.A. (2012) Evaluation of long-term gas-hydrate-production testing locations on the Alaska North Slope, SPE Reserv. Eval. Eng.s 15, 2, 243–264. [Google Scholar]
  • Xia Z., Hou J., Liu Y., Li S., Du Q., Lu N. (2017) Production characteristic investigation of the Class I, Class II and Class III hydrate reservoirs developed by the depressurization and thermal stimulation combined method, J. Pet. Sci. Eng. 157, 56–67. [Google Scholar]
  • Uchida T., Ebinuma T., Takeya S., Nagao J., Narita H. (2002) Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media, J. Phys. Chem. B 106, 4, 820–826. [Google Scholar]
  • de Lima Silva P.H., Naccache M.F., de Souza Mendes P.R., Teixeira A., Valim L.S. (2020) Rheology of THF hydrate slurries at high pressure, Oil Gas Sci. Technol. – Rev IFP Energies Nouvelles 75, 16. [Google Scholar]
  • Kiran B.S., Sowjanya K., Prasad P.S.R., Yoon J.H. (2019) Experimental investigations on tetrahydrofuran–methane–water system: Rapid methane gas storage in hydrates, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 74, 12. [Google Scholar]
  • Malegaonkar M.B., Dholabhai P.D., Bishnoi P.R. (1997) Kinetics of carbon dioxide and methane hydrate formation, Can. J. Chem. Eng. 75, 6, 1090–1099. [Google Scholar]
  • Sun X. (2005) Modeling of hydrate formation and dissociation in porous media. PhD Thesis, University of Houston, USA. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.