Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 3
Nombre de pages 10
Publié en ligne 17 décembre 2020
  • Li Y., Kang Z., Xue Z., Zheng S. (2018) Theories and practices of carbonate reservoirs development in China, Pet. Explor. Dev. 450, 4, 669–678. [Google Scholar]
  • Zhan Z.-W., Zou Y.-R., Pan C., Sun J.-N., Lin X.-H., Peng P. (2017) Origin, charging, and mixing of crude oils in the Tahe oilfield, Tarim basin, China, Organic Geochem. 108, 18–29. [CrossRef] [Google Scholar]
  • Wang C., Zhang Q., Xiang W. (2017) Physical and numerical modeling of the stability of deep caverns in Tahe oil field in China, Energies 100, 6, 769. [Google Scholar]
  • Tian F., Wang Z., Cheng F., Xin W., Fayemi O., Zhang W., Shan X. (2019) Three-dimensional geophysical characterization of deeply buried Paleokarst system in the Tahe oilfield, Tarim basin, China, Water 110, 5, 1045. [Google Scholar]
  • Shan X., Tian F., Cheng F., Yang C., Xin W. (2019) Spectral decomposition and a waveform cluster to characterize strongly heterogeneous paleokarst reservoirs in the Tarim basin, China, Water 110, 2, 256. [Google Scholar]
  • Liu Z. (2015) Analyses of the remained oil and eor methods for Tahe paleokarst reservoirs, Pet. Geol. Oilfield Dev. Daqing 340, 2, 62–68. [Google Scholar]
  • Zang L., Yuan J., Liang H., Li K. (2008) Energy from abandoned oil and gas reserves, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, pp. 20–22. [Google Scholar]
  • Valizadeh K., Davarpanah A. (2020) Design and construction of a micro-photo bioreactor in order to dairy wastewater treatment by micro-algae: parametric study, Energy Sources Part A 420, 5, 611–624. [CrossRef] [Google Scholar]
  • Zheng S., Yang M., Kang Z., Liu Z., Long X., Liu K., Li X., Zhang S. (2019) Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe oilfield, Pet. Explor. Dev. 460, 4, 786–795. [CrossRef] [Google Scholar]
  • Mahmoud M., Tariq Z., Shahzad Kamal M., Al-Naser M. (2019) Intelligent prediction of optimum separation parameters in the multistage crude oil production facilities, J. Pet. Explor. Prod. Technol. 90, 4, 2979–2995. [Google Scholar]
  • Ghorbani H., Wood D.A., Moghadasi J., Choubineh A., Abdizadeh P., Mohamadian N. (2019) Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: an oil field case study, J. Pet. Explor. Prod. Technol. 90, 2, 1355–1373. [Google Scholar]
  • Guevara J., Zadrozny B., Buoro A., Lu L., Tolle J., Limbeck J.W., Hohl D. (2019) A machine-learning methodology using domain-knowledge constraints for well-data integration and well-production prediction, SPE Reserv. Eval. Eng. 22, 16. [CrossRef] [Google Scholar]
  • Lee K., Lim J., Yoon D., Jung H. (2019) Prediction of shale-gas production at duvernay formation using deep-learning algorithm, SPE J. 24, 6, 15. [Google Scholar]
  • Li X., Wu X. (2015, April) Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition, in: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 4520–4524. [Google Scholar]
  • Dubos-Sallée N., Fourno A., Zarate-Rada J., Gervais V., Rasolofosaon P.N.J., Lerat O. (2020) A complete workflow applied on an oil reservoir analogue to evaluate the ability of 4D seismics to anticipate the success of a chemical enhanced oil recovery process, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 18. [CrossRef] [Google Scholar]
  • Monteiro D.D., Duque M.M., Chaves G.S., Ferreira Filho V.M., Baioco J.S. (2020) Using data analytics to quantify the impact of production test uncertainty on oil flow rate forecast, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 7. [CrossRef] [Google Scholar]
  • Maschio C., Schiozer D.J. (2019) Integration of geostatistical realizations in data assimilation and reduction of uncertainty process using genetic algorithm combined with multi-start simulated annealing, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 73. [CrossRef] [Google Scholar]
  • Schiozer D.J., de Souza dos Santos A.A., de Graça Santos S.M., von Hohendorff Filho J.C. (2019) Model-based decision analysis applied to petroleum field development and management, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 46. [CrossRef] [Google Scholar]
  • Pao Y.-H., Takefuji Y. (1992) Functional-link net computing: theory, system architecture, and functionalities, Computer 250, 5, 76–79. [Google Scholar]
  • Pao Y.-H., Phillips S.M., Sobajic D.J. (1992) Neural-net computing and the intelligent control of systems, Int. J. Control 560, 2, 263–289. [Google Scholar]
  • Pao Y.-H., Park G.-H., Sobajic D.J. (1994) Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 60, 2, 163–180. [Google Scholar]
  • Lian C., Zhu L., Zeng Z., Su Y., Yao W., Tang H. (2018) Constructing prediction intervals for landslide displacement using bootstrapping random vector functional link networks selective ensemble with neural networks switched, Neurocomputing 291, 1–10. [Google Scholar]
  • Aggarwal A., Tripathi M.M. (2018) Short-term solar power forecasting using Random Vector Functional Link (RVFL) network, in: Ambient Communications and Computer Systems, Springer, pp. 29–39. [Google Scholar]
  • Ren Y., Suganthan P.N., Srikanth N., Amaratunga G. (2015) Random vector functional link neural network for short-term wind power RAMP forecasting, Mendel 2015, 77–84. [Google Scholar]
  • Tang L., Wu Y., Yu L. (2018) A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting, Appl. Soft Comput. 70, 1097–1108. [Google Scholar]
  • Yu Y., Choi T.-M., Hui C.-L. (2012) Time-constrained fashion sales forecasting by extended random vector functional link model, in: Fashion Supply Chain Management: Industry and Business Analysis, IGI Global, pp. 185–191. [CrossRef] [Google Scholar]
  • Qiu X., Ren Y., Suganthan P.N., Amaratunga G.A.J. (2017) Short-term wind power ramp forecasting with empirical mode decomposition based ensemble learning techniques, in: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1–8. [Google Scholar]
  • Maeda K., Takahashi S., Ogawa T., Haseyama M. (2019) Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures, Comput.-Aid.Civil Infrastruct. Eng. 340, 8, 654–676. [CrossRef] [Google Scholar]
  • Fan L., Sun W., Feng G. (2019) Image steganalysis via random subspace fisher linear discriminant vector functional link network and feature mapping, Mobile Netw. Appl. 240, 4, 1269–1278. [CrossRef] [Google Scholar]
  • Sahaya Sujithra Mary S., Sasithradevi A., Mohamed Mansoor Roomi S., Jebas Immanuvel J. (2019) A random vector functional link network based content based image retrieval, in: 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Vol. 1, IEEE, pp. 486–492. [Google Scholar]
  • Sahani M., Dash P.K. (2019) FPGA-based online power quality disturbances monitoring using reduced-sample HHT and class-specific weighted RVFLN, IEEE Trans. Ind. Inf. 150, 8, 4614–4623. [CrossRef] [Google Scholar]
  • Sharshir S.W., Abd Elaziz M., Elkadeem M.R. (2020) Enhancing thermal performance and modeling prediction of developed pyramid solar still utilizing a modified random vector functional link, Solar Energy 198, 399–409. [CrossRef] [Google Scholar]
  • Zhang P.B., Yang Z.X. (2020) A new learning paradigm for random vector functional-link network: RVFL+, Neural Networks 122, 94–105. [CrossRef] [Google Scholar]
  • Zhang L., Suganthan P.N. (2016) A comprehensive evaluation of random vector functional link networks, Inf. Sci. 367, 1094–1105. [Google Scholar]
  • Cui W., Zhang L., Li B., Guo J., Meng W., Wang H., Xie L. (2017) Received signal strength based indoor positioning using a random vector functional link network, IEEE Trans. Ind. Inf. 1405, 1846–1855. [Google Scholar]
  • Zhao J., Tang D., Liu Z., Cai Y., Dong S. (2020) Spherical search optimizer: a simple yet efficient meta-heuristic approach, Neural Comput. Appl., 32, 9777–9808. [Google Scholar]
  • Naji Alwerfali H.S., Al-qaness M.A.A., Abd Elaziz M., Ewees A.A., Oliva D., Lu S. (2020) Multi-level image thresholding based on modified spherical search optimizer and fuzzy entropy, Entropy 220, 3, 328. [CrossRef] [Google Scholar]
  • Wu J., Fan T., Gao Z., Gu Y., Wang J., Du Y., Li C., Wang S., Zhang C., Meng M., Wei D., Fan H. (2018) Identification and characteristic analysis of carbonate cap rock: A case study from the lower-middle ordovician yingshan formation in Tahe oilfield, Tarim basin, China, J. Pet. Sci. Eng. 164, 362–381. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.