- Sadeghnejad S., Masihi M. (2011) Water flooding performance evaluation using percolation theory, J. Pet. Sci. Technol. 1, 2, 19–23. [Google Scholar]
- de Aguiar K.L.N.P., de Oliveira P.F., Mansur C.R.E. (2020) A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 1, 8. [CrossRef] [Google Scholar]
- Liu Y., Bai B., Wang Y. (2010) Applied technologies and prospects of conformance control treatments in China, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 6, 859–878. [CrossRef] [Google Scholar]
- Bai B., Wei M., Liu Y. (2012) Injecting large volumes of preformed particle gel for water conformance control, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 6, 941–952. [CrossRef] [Google Scholar]
- Yu L., Sang Q., Dong M. (2018) Enhanced oil recovery ability of branched preformed particle gel in heterogeneous reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 65. [CrossRef] [Google Scholar]
- Lalehrokh F. (2010) Applicability of pH-triggered polymers to increase sweep efficiency in fractured reservoirs, PhD Thesis, The University of Texas, Austin, 132 p. [Google Scholar]
- Lalehrokh F., Bryant S.L., Huh C., Sharma M.M. (2008) Application of pH-triggered polymers in fractured reservoirs to increase sweep efficiency, in: SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers, Tulsa, USA. [Google Scholar]
- Panthi K., Mohanty K.K. (2018) pH-insensitive polymeric particles for enhanced oil recovery in reservoirs with fractures, SPE J. 23, 1, 34–47. [CrossRef] [Google Scholar]
- Ashrafizadeh M., Ahmad Ramazani S.A., Sadeghnejad S. (2017) Enhanced polymer flooding using a novel nano-scale smart polymer: Experimental investigation, Can. J. Chem. Eng. 95, 11, 2168–2175. [Google Scholar]
- Al-Anazi H.A., Sharma M.M. (2002) Use of a pH sensitive polymer for conformance control, in: International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers, Lafayette, USA. [Google Scholar]
- Ashrafizadeh M., Tam K.C., Javadi A., Abdollahi M., Sadeghnejad S., Bahramian A. (2019) Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate crosslinked nanogel systems, J. Colloid Interface Sci. 556, 313–323. [Google Scholar]
- Abdel-Goad M., Al-Wahaibi Y., Al-Wahaib T., Al-Shurji H. (2012) Use of a novel pH-triggered polymer-gel system for optimal mobility-control applications, e-Polymers 12, 1. [CrossRef] [Google Scholar]
- Huh C., Choi S.K., Sharma M.M. (2005) Rheological model for pH-sensitive ionic polymer solutions for optimal mobility control applications, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Dallas, USA. [Google Scholar]
- Younesian-Farid H., Sadeghnejad S. (2019) Geochemical performance evaluation of pre-flushing of weak and strong acids during pH-triggered polymer flooding, J. Pet. Sci. Eng. 174, 1022–1033. [Google Scholar]
- Tavassoli S., Ho J.F., Shafiei M., Huh C., Bommer P., Bryant S., Balhoff M.T. (2018) An experimental and numerical study of wellbore leakage mitigation using pH-triggered polymer gelant, Fuel 217, 444–457. [CrossRef] [Google Scholar]
- Suk K.C., Ermel Y.M., Bryant S.L., Huh C., Sharma M.M. (2006) Transport of a pH-sensitive polymer in porous media for novel mobility-control applications, in: SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers, Tulsa, USA. [Google Scholar]
- Benson I.P. (2007) Numerical simulation of ph-sensitive polymer injection as a conformance control method, Master of Science Thesis, The university of Texas, Austin. 211 p. [Google Scholar]
- Al-Wahaibi Y., Al-Wahaibi T., Abdelgoad M. (2011) Characterization of pH-sensitive Polymer microgel transport in porous media for improving oil recovery, Energy Sources Part A Recovery Utilization Env. Effects 33, 11, 1048–1057. [CrossRef] [Google Scholar]
- Al-Khaldi M.H., Nasr-El-Din H.A., Mehta S., Al-Aamri A. (2007) Reaction of citric acid with calcite, Chem. Eng. Sci. 62, 21, 5880–5896. [Google Scholar]
- Choi S.K. (2005) A study of a pH-sensitive polymer for novel conformance control applications, Master of Science Thesis, The University of Texas, Austin, 162 p. [Google Scholar]
- Schneider C.A., Rasband W.S., Eliceiri K.W. (2012) NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 7, 671. [CrossRef] [PubMed] [Google Scholar]
- Javadi M., Sharifzadeh M., Shahriar K., Mitani Y. (2014) Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes, Water Resour. Res. 50, 2, 1789–1804. [Google Scholar]
- Sarkar S., Toksoz M.N., Burns D.R. (2004) Fluid flow modeling in fractures, Massachusetts Institute of Technology. Earth Resources Laboratory, Cambridge, MA, USA. [Google Scholar]
- Nierode D.E., Williams B., Bombardieri C. (1972) Prediction of stimulation from acid fracturing treatments, J. Can. Pet. Technol. 11, 4, 31–41. [CrossRef] [Google Scholar]
- Fredd C.N., Fogler H.S. (1998) Influence of transport and reaction on wormhole formation in porous media, AIChE J. 44, 9, 1933–1949. [Google Scholar]
- Fredd C.N., Fogler H.S. (1998) The kinetics of calcite dissolution in acetic acid solutions, Chem. Eng. Sci. 53, 22, 3863–3874. [Google Scholar]
- Fredd C., Miller M. (2000) Validation of carbonate matrix stimulation models, in: SPE International Symposium on Formation Damage Control, Society of Petroleum Engineers, Lafayette, USA. [Google Scholar]
- Shen J., Lin X., Liu J., Li X. (2018) Effects of crosslink density and distribution on static and dynamic properties of chemically crosslinked polymers, Macromolecules 52, 1, 121–134. [Google Scholar]
- Zosel A. (1989) Adhesive failure and deformation behaviour of polymers, J. Adhes. 30, 1–4, 135–149. [Google Scholar]
- Grillet A.M., Wyatt N.B., Gloe L.M. (2012) Polymer gel rheology and adhesion, Rheology 3, 59–80. [Google Scholar]
- Dai L.-Y., He D., Lei M., Chen Y. (2008) Densities and viscosities of binary mixtures of acetic acid with acetic anhydride and methenamine at different temperatures, J. Chem. Eng. Data 53, 12, 2892–2896. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Numéro d'article | 52 | |
Nombre de pages | 13 | |
DOI | https://doi.org/10.2516/ogst/2020048 | |
Publié en ligne | 28 juillet 2020 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.