Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Numéro d'article 47
Nombre de pages 14
DOI https://doi.org/10.2516/ogst/2020043
Publié en ligne 14 juillet 2020
  • Acuna J.A., Ershaghi I., Yortsos Y.C. (1995) Practical application of fractal pressure transient analysis of naturally fractured reservoirs, SPE Form. Eval. 10, 3, 173–179. [CrossRef] [Google Scholar]
  • Adler P.M. (1996) Transports in fractal porous media, J. Hydrol. 187, 195–213. [CrossRef] [Google Scholar]
  • Barenblatt G.I., Zheltov I.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Behnoudfar P., Asadi M.B., Gholilou A., Zendehboudi S. (2019) A new model to conduct hydraulic fracture design in coalbed methane reservoirs by incorporating stress variations, J. Pet. Sci. Eng. 174, 1208–1222. [Google Scholar]
  • Cao R., Xu Z., Cheng L., Peng Y., Wang Y., Guo Z. (2019) Study of single phase mass transfer between matrix and fracture in tight oil reservoirs, Geofluids 2019, 1–11. [Google Scholar]
  • Chang J., Yortsos Y.C. (1990) Pressure-transient analysis of fractal reservoirs, SPE Form. Eval. 5, 1, 31–38. [CrossRef] [Google Scholar]
  • Coats K.H. (1989) Implicit compositional simulation of single-porosity and dual-porosity reservoirs, in: SPE Symposium on Reservoir Simulation, Houston, Texas, 6–8 February, Society of Petroleum Engineers. [Google Scholar]
  • Costa A. (2006) Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophys. Res. Lett. 33, 2, L02318. [Google Scholar]
  • Erol S., Fowler S.J., Harcouët-Menou V., Laenen B. (2017) An analytical model of porosity–permeability for porous and fractured media, Transp. Porous Media 120, 2, 327–358. [Google Scholar]
  • Fan D., Ettehadtavakkol A. (2017) Semi-analytical modeling of shale gas flow through fractal induced fracture networks with microseismic data, Fuel 193, 444–459. [CrossRef] [Google Scholar]
  • Flamenco-Lopez F., Camacho-Velazquez R. (2001) Fractal transient pressure behavior of naturally fractured reservoirs, in: SPE Annual Technical Conference and Exhibition, 30 September–3 October, New Orleans, Louisiana, Society of Petroleum Engineers. [Google Scholar]
  • Hassanzadeh H., Pooladidarvish M. (2006) Effects of fracture boundary conditions on matrix-fracture transfer shape factor, Transp. Porous Media 64, 1, 51–71. [Google Scholar]
  • He Y., Chen X., Zhang Y., Yu W. (2017) Modeling interporosity flow functions and shape factors in low-permeability naturally fractured reservoir, J. Pet. Sci. Eng. 156, 110–117. [Google Scholar]
  • Huang T., Du P., Peng X., Wang P., Zou G. (2020) Pressure drop and fractal non-Darcy coefficient model for fluid flow through porous media, J. Pet. Sci. Eng. 184, 106579. [Google Scholar]
  • Katz A.J., Thompson A.H. (1985) Fractal sandstone pores: Implications for conductivity and pore formation, Phys. Rev. Lett. 5412, 1325–1328. [CrossRef] [PubMed] [Google Scholar]
  • Kazemi H., Merrill L.S., Porterfield K.L., Zeman P.R. (1976) Numerical simulation of water-oil flow in naturally fractured reservoirs, SPE J. 16, 6, 317–326. [Google Scholar]
  • Kong X., Li D., Lu D. (2007) Basic formulas of fractal seepage and type-curves of fractal reservoirs, Journal of Xi’an Shiyou University (Natural Science Edition) 22, 2, 1–10. [Google Scholar]
  • Kong X., Li D., Lu D. (2009) Transient pressure analysis in porous and fractured fractal reservoirs, Sci. China, Ser. E: Technol. Sci. 52, 9, 2700–2708. [CrossRef] [Google Scholar]
  • Krohn C.E. (1988) Fractal measurements of sandstones, shales, and carbonates, J. Geophys. Res. 93, 3297–3305. [Google Scholar]
  • Li Q., Xing H., Liu J., Liu X. (2015) A review on hydraulic fracturing of unconventional reservoir, Petroleum 1, 1, 8–15. [CrossRef] [Google Scholar]
  • Lian P.Q., Duan T.Z., Xu R., Li L.L., Li M. (2018) Pressure behavior of shale-gas flow in dual porous medium based on fractal theory, Interpretation 6, 4, SN1–SN10. [CrossRef] [Google Scholar]
  • Lim K.T., Aziz K. (1995) Matrix-fracture transfer shape factors for dual-porosity simulators, J. Pet. Sci. Eng. 13, 3, 169–178. [Google Scholar]
  • Nelson P.H. (2009) Pore-throat sizes in sandstones, tight sandstones, and shales, AAPG Bull. 93, 3, 329–340. [CrossRef] [Google Scholar]
  • Noetinger B., Estebenet T. (2000) Up-scaling of double porosity fractured media using continuous-time random walks methods, Transp. Porous Media 39, 3, 315–337. [Google Scholar]
  • Ranjbar E., Hassanzadeh H., Chen Z. (2011) Effect of fracture pressure depletion regimes on the dual-porosity shape factor for flow of compressible fluids in fractured porous media, Adv. Water Resour. 34, 12, 1681–1693. [Google Scholar]
  • Saboorian-Jooybari H., Ashoori S., Mowazi G. (2015) A new transient matrix/fracture shape factor for capillary and gravity imbibition in fractured reservoirs, Energy Sources Part A 37, 23, 2497–2506. [CrossRef] [Google Scholar]
  • Sarma P., Aziz K. (2004) New transfer functions for simulation of naturally fractured reservoirs with dual porosity models, in: SPE Annual Technical Conference and Exhibition, Houston, Texas, 26–29 September, Society of Petroleum Engineers. [Google Scholar]
  • Thomas L.K., Dixon T.N., Pierson R.G. (1983) Fractured reservoir simulation, SPE J. 23, 1, 42–54. [Google Scholar]
  • Ueda Y., Murata S., Watanabe Y., Funatsu K. (1989) Investigation of the shape factor used in the dual-porosity reservoir simulator, in: SPE Asia-Pacific Conference, 13–15 September, Sydney, Society of Petroleum Engineers. [Google Scholar]
  • Vishkai M., Gates I. (2019) On multistage hydraulic fracturing in tight gas reservoirs: Montney Formation, Alberta, Canada, J. Pet. Sci. Eng. 174, 1127–1141. [Google Scholar]
  • Wang W., Yuan B., Su Y., Sheng G., Yao W., Gao H., Wang K. (2018) A composite dual-porosity fractal model for channel-fractured horizontal wells, Eng. Appl. Comput. Fluid Mech. 12, 1, 104–116. [Google Scholar]
  • Wang W., Zheng D., Sheng G., Zhang Q., Su Y. (2017) A review of stimulated reservoir volume characterization for multiple fractured horizontal well in unconventional reservoirs, Adv. Geo-Energy Res. 1, 1, 54–63. [CrossRef] [Google Scholar]
  • Warren J.E., Root P.J. (1963) The behavior of naturally fractured reservoirs, SPE J. 3, 3, 245–255. [Google Scholar]
  • Yao Y., Wu Y., Zhang R. (2012) The transient flow analysis of fluid in a fractal, double-porosity reservoir, Transp. Porous Media 94, 1, 175–187. [Google Scholar]
  • Ye W., Wang X., Cao C., Yu W. (2019) A fractal model for threshold pressure gradient of tight oil reservoirs, J. Pet. Sci. Eng. 179, 427–431. [Google Scholar]
  • Yin S., Xie R., Ding W., Shan Y., Zhou W. (2017) Influences of fractal characteristics of reservoir rocks on permeability, Lithologic Reserv. 29, 4, 81–90. [Google Scholar]
  • Yu B., Cheng P. (2002) A fractal permeability model for bi-dispersed porous media, Int. J. Heat Mass Transf. 45, 14, 2983–2993. [Google Scholar]
  • Yun M., Yu B., Cai J. (2009) Analysis of seepage characters in fractal porous media, Int. J. Heat Mass Transf. 52, 13, 3272–3278. [Google Scholar]
  • Zhou D., Ge J., Li Y., Cai Y. (2000) Establishment of interporosity flow function of complex fractured reservoirs, OGRT 7, 2, 30–32. [Google Scholar]
  • Zimmerman R.W., Chen G., Hadgu T., Bodvarsson G.S. (1993) A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow, Water Resour. Res. 29, 7, 2127–2137. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.