Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 17
Nombre de pages 9
Publié en ligne 26 mars 2020
  • Mahi M.R., Ouaar F., Negadi A., Bahadur I., Negadi L. (2018) Excess/deviation properties of binary mixtures of 2,5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 64. [Google Scholar]
  • Jafari A., Hasani M., Hosseini M., Gharibshahi R. (2019) Application of CFD technique to simulate enhanced oil recovery processes: Current status and future opportunities, Pet. Sci. 1–23. [Google Scholar]
  • Hirasaki G.J., Miller C.A., Puerto M. (2008) Recent advances in surfactant EOR, in: IPTC 2008: International Petroleum Technology Conference, 3–5 December, Kuala Lumpur, Malaysia. [Google Scholar]
  • Chen X., Feng Q., Liu W., Sepehrnoori K. (2017) Modeling preformed particle gel surfactant combined flooding for enhanced oil recovery after polymer flooding, Fuel 194, 42–49. [CrossRef] [Google Scholar]
  • Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Vol. 3, HL Doherty Memorial Fund of AIME, New York. [Google Scholar]
  • Kumar N., Mandal A. (2018) Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application, Energy Fuels 32, 6452–6466. [Google Scholar]
  • Shi S., Wang Y., Wang L., Jin Y., Wang T., Wang J. (2015) Potential of spontaneous emulsification flooding for enhancing oil recovery in high-temperature and high-salinity oil reservoir, J. Dispers. Sci. Technol. 36, 660–669. [Google Scholar]
  • Liu S., Zhang D., Yan W., Puerto M., Hirasaki G.J., Miller C.A. (2008) Favorable attributes of alkaline-surfactant-polymer flooding, SPE J. 13, 5–16. [CrossRef] [Google Scholar]
  • Manrique E.J., Thomas C.P., Ravikiran R., Izadi Kamouei M., Lantz M., Romero J.L., Alvarado V. (2010) EOR: current status and opportunities, in:SPE Improved Oil Recovery Symposium, 24–28 April, Tulsa, OK. Society of Petroleum Engineers. [Google Scholar]
  • Puerto M.C. (2001) Surfactants: Fundamentals and Applications in the Petroleum Industry-Cambridge University Press, 2000, pp. 621, @ 85.00 (US 140.00)(hardback), ISBN 0-521-64067-9, Chem. Eng. J. 83, 1, 63. [Google Scholar]
  • Li Y., Zhang W., Kong B., Puerto M., Bao X., Sha O., Shen Z., Yang Y., Liu Y., Gu S. (2016) Mixtures of anionic/cationic surfactants: A new approach for enhanced oil recovery in low-salinity, high-temperature sandstone reservoir, SPE J. 21, 1–164. [CrossRef] [Google Scholar]
  • Ahmadi S., Hosseini M., Tangestani E., Mousavi S.E., Niazi M. (2020) Wettability alteration and oil recovery by spontaneous imbibition of smart water and surfactants into carbonates, Pet. Sci. 1–10. [Google Scholar]
  • Dehaghani A.H.S., Badizad M.H. (2019) Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding, Colloids Surf. A Physicochem. Eng. Asp. 568, 470–480. [Google Scholar]
  • Sheng J.J. (2010) Modern chemical enhanced oil recovery: theory and practice, Gulf Professional Publishing, Oxford, UK. [Google Scholar]
  • Flaaten A., Nguyen Q.P., Pope G.A., Zhang J. (2008) A systematic laboratory approach to low-cost, high-performance chemical flooding, in: SPE Symposium on Improved Oil Recovery, 20–23 April, Tulsa, OK. Society of Petroleum Engineers. [Google Scholar]
  • Hirasaki G., Zhang D.L. (2004) Surface chemistry of oil recovery from fractured, oil-wet, carbonate formations, SPE J. 9, 151–162. [CrossRef] [Google Scholar]
  • Rosen M.J. (2004) Emulsification by surfactants, in: Surfactants Interfacial Phenomena, 3rd edn., Wiley, Hoboken, NJ, pp. 303–331. [CrossRef] [Google Scholar]
  • Winsor P.A. (1948) Hydrotropy, solubilisation and related emulsification processes, Trans. Faraday Soc. 44, 376–398. [Google Scholar]
  • Teh Y.S., Rangaiah G.P. (2002) A study of equation-solving and Gibbs free energy minimization methods for phase equilibrium calculations, Chem. Eng. Res. Des. 80, 745–759. [Google Scholar]
  • Ashrafizadeh S.N., Motaee E., Hoshyargar V. (2012) Emulsification of heavy crude oil in water by natural surfactants, J. Pet. Sci. Eng. 86, 137–143. [Google Scholar]
  • Dadfar B., Biria D. (2015) Application of group contribution–NRTL model with closure to predict LLE behavior of an oil/brine/surfactant system, J. Chem. Eng. Data 60, 2575–2584. [Google Scholar]
  • Jin L., Budhathoki M., Jamili A., Li Z., Luo H., Ben Shiau B.J., Delshad M., Harwell J.H. (2017) Predicting microemulsion phase behavior using physics based HLD-NAC equation of state for surfactant flooding, J. Pet. Sci. Eng. 151, 213–223. [Google Scholar]
  • Privat R., Jaubert J.-N., Privat Y. (2013) A simple and unified algorithm to solve fluid phase equilibria using either the gamma–phi or the phi–phi approach for binary and ternary mixtures, Comput. Chem. Eng. 50, 139–151. [Google Scholar]
  • Panah H.S. (2018) Modeling binary vapor–liquid equilibrium data containing perfluorocarbons using the Peng-Robinson and the PC-SAFT equations of state, Int. J. Refrig. 85, 13–26. [Google Scholar]
  • Li Z., Mumford K.A., Shang Y., Smith K.H., Chen J., Wang Y., Stevens G.W. (2014) Analysis of the nonrandom two-liquid model for prediction of liquid–liquid equilibria, J. Chem. Eng. Data 59, 2485–2489. [Google Scholar]
  • Li Z., Mumford K.A., Smith K.H., Chen J., Wang Y., Stevens G.W. (2016) Solution structure of isoactivity equations for liquid-liquid equilibrium calculations using the nonrandom two-liquid model, Ind. Eng. Chem. Res. 55, 2852–2859. [Google Scholar]
  • Yushan Z.H.U., Zhihong X.U. (1999) A reliable method for liquid-liquid phase equilibrium calculation and global stability analysis, Chem. Eng. Commun. 176, 133–160. [Google Scholar]
  • Dadmohammadi Y., Gebreyohannes S., Neely B.J., Gasem K.A.M. (2018) Application of modified NRTL models for binary LLE phase characterization, Ind. Eng. Chem. Res. 57, 7282–7290. [Google Scholar]
  • Boshkov L.Z., Yelash L.V. (1997) Closed-loops of liquid-liquid immiscibility in binary mixtures predicted from the Redlich-Kwong equation of state, Fluid Phase Equilib. 141, 105–112. [Google Scholar]
  • Sofyan Y., Ghajar A.J., Gasem K.A.M. (2003) A systematic method to predict cloud point temperature and solid precipitation, Pet. Sci. Technol. 21, 409–424. [Google Scholar]
  • Domańska U., Morawski P., Wierzbicki R. (2006) Phase diagrams of binary systems containing n-alkanes, or cyclohexane, or 1-alkanols and 2, 3-pentanedione at atmospheric and high pressure, Fluid Phase Equilib. 242, 154–163. [Google Scholar]
  • Giovanoglou A., Adjiman C.S., Jackson G., Galindo A. (2009) Fluid phase stability and equilibrium calculations in binary mixtures: Part II: Application to single-point calculations and the construction of phase diagrams, Fluid Phase Equilib. 275, 95–104. [Google Scholar]
  • Królikowska M., Karpińska M. (2013) Phase equilibria study of the (N-octylisoquinolinium thiocyanate ionic liquid + aliphatic and aromatic hydrocarbon, or thiophene) binary systems, J. Chem. Thermodyn. 63, 128–134. [Google Scholar]
  • Królikowska M., Karpińska M., Zawadzki M. (2013) Phase equilibria study of (ionic liquid + water) binary mixtures, Fluid Phase Equilib. 354, 66–74. [Google Scholar]
  • Reynel-Ávila H.E., Bonilla-Petriciolet A., Tapia-Picazo J.C. (2019) An artificial neural network-based NRTL model for simulating liquid-liquid equilibria of systems present in biofuels production, Fluid Phase Equilib. 483, 153–164. [Google Scholar]
  • Nasrifar K., Rahmanian N. (2018) Equations of state with group contribution binary interaction parameters for calculation of two-phase envelopes for synthetic and real natural gas mixtures with heavy fractions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 7. [CrossRef] [Google Scholar]
  • Riazi M.R., Moshfeghian M. (2009) A thermodynamic model for LLE behavior of oil/brine/ionic-surfactant/alcohol co-surfactant systems for EOR processes, J. Pet. Sci. Eng. 67, 75–83. [Google Scholar]
  • Cheng H., Kontogeorgis G.M., Stenby E.H. (2005) Correlation and prediction of environmental properties of alcohol ethoxylate surfactants using the UNIFAC method, Ind. Eng. Chem. Res. 44, 7255–7261. [Google Scholar]
  • Qiu T., Li S., Li S., Wu Y. (2009) Liquid–liquid phase equilibria of the ternary system of water/1, 4-dioxane/dihydromyrcene, Fluid Phase Equilib. 280, 84–87. [Google Scholar]
  • Prausnitz J.M., Lichtenthaler R.N., De Azevedo E.G. (1998) Molecular thermodynamics of fluid-phase equilibria, Pearson Education, London, UK. [Google Scholar]
  • Kontogeorgis G.M., Folas G.K. (2009) Thermodynamic models for industrial applications: From classical and advanced mixing rules to association theories, John Wiley & Sons, Hoboken, NJ. [Google Scholar]
  • Sivanandam S.N., Deepa S.N. (2008) Genetic algorithms, in:Introduction to genetic algorithms, Springer, Berlin, Germany, pp. 15–37. [CrossRef] [Google Scholar]
  • Gen M., Cheng R., Lin L. (2008) Network models and optimization: Multiobjective genetic algorithm approach, Springer Science & Business Media, Berlin, Germany. [Google Scholar]
  • Panah H.S., Mohammadi A.H., Ramjugernath D. (2016) Development of a novel approach for modeling acid gas solubility in alkanolamine aqueous solution, J. Nat. Gas Sci. Eng. 34, 112–123. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.