Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Numéro d'article 23
Nombre de pages 13
DOI https://doi.org/10.2516/ogst/2020015
Publié en ligne 15 avril 2020
  • Basu D., Das K., Smart K., Ofoegbu G. (2015) Comparison of Eulerian-Granular and discrete element models for simulation of proppant flows in fractured reservoirs, in ASME 2015 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection. [Google Scholar]
  • Cheng K., Wang Y., Yang Q. (2018) A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils, Comput. Geotech. 100, 30–51. [Google Scholar]
  • Dorari E., Saffar-Avval M., Mansoori Z. (2015) Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method, Phys. Rev. E 92, 6, 063034. [Google Scholar]
  • Guo L., Xu H., Gong L. (2015) Influence of wall roughness models on fluid flow and heat transfer in microchannels, Appl. Therm. Eng. 84, 399–408. [Google Scholar]
  • Haddadi H., Di Carlo D. (2017) Inertial flow of a dilute suspension over cavities in a microchannel, J. Fluid Mech. 811, 436–467. [Google Scholar]
  • Han K., Feng Y., Owen D. (2007a) Coupled lattice Boltzmann and discrete element modelling of fluid–particle interaction problems, Comput. Struct. 85, 11–14, 1080–1088. [Google Scholar]
  • Han K., Feng Y., Owen D. (2007b) Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM, Comput. Model. Eng. Sci. 18, 2, 87. [Google Scholar]
  • Han Y., Cundall P. (2017) Verification of two-dimensional LBM-DEM coupling approach and its application in modeling episodic sand production in borehole, Petroleum 3, 2, 179–189. [CrossRef] [Google Scholar]
  • Hemmati Y., Rafee R. (2018) Effects of the shape and height of artificial 2D roughness elements on deposition of nano and microparticles in the turbulent gas flow inside a horizontal channel, J. Aerosol Sci. 122, 45–58. [Google Scholar]
  • Hong W., Wang X., Zheng J. (2018) Numerical study on particle deposition in rough channels with different structure parameters of rough elements, Adv. Powder Technol. 29, 11, 2895–2903. [Google Scholar]
  • Huang H., Babadagli T., Andy Li H., Develi K. (2018) Visual analysis on the effects of fracture-surface characteristics and rock type on proppant transport in vertical fractures, in SPE Hydraulic Fracturing Technology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Kuruneru S.T., Sauret E., Saha S.C., Gu Y.T. (2017) A coupled finite volume & discrete element method to examine particulate foulant transport in metal foam heat exchangers, International Journal of Heat and Mass Transfer 115, 43–61. [Google Scholar]
  • Li J., Qiu Z., Zhong H., Zhao X., Huang W. (2020) Coupled CFD-DEM analysis of parameters on bridging in the fracture during lost circulation, J. Petrol. Sci. Eng. 184, 106501. [CrossRef] [Google Scholar]
  • Li L., Voskov D. (2018) Multi-level discrete fracture model for carbonate reservoirs, in ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery, European Association of Geoscientists & Engineers, pp. 1–17. [Google Scholar]
  • Li N., Dai J., Li J., Bai F., Liu P., Luo Z. (2016) Application status and research progress of shale reservoirs acid treatment technology, Nat. Gas Ind. B 3, 2, 165–172. [CrossRef] [Google Scholar]
  • Lijun L., Jun Y., Hai S., Zhaoqin H., Xia Y., Longlong L. (2019) Compositional modeling of shale condensate gas flow with multiple transport mechanisms, J. Petrol. Sci. Eng. 172, 1186–1201. [CrossRef] [Google Scholar]
  • Ogilvie S.R., Isakov E., Glover P.W. (2006) Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures, Earth Planet. Sci. Lett. 241, 3–4, 454–465. [Google Scholar]
  • Oliveira Jr J.A.A., Zago J., Fontes C., Waldmann A.T.A., Martins A.L. (2012) Modeling drilling fluid losses in fractured reservoirs, in SPE Latin America and Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers. [Google Scholar]
  • Patankar N.A., Singh P., Joseph D.D., Glowinski R., Pan T.-W. (2000) A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow 26, 9, 1509–1524. [CrossRef] [Google Scholar]
  • Sommerfeld M., Kussin J. (2004) Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol. 142, 2–3, 180–192. [Google Scholar]
  • Song W., Yao J., Li Y., Sun H., Zhang L., Yang Y., Sui H. (2016) Apparent gas permeability in an organic-rich shale reservoir, Fuel 181, 973–984. [CrossRef] [Google Scholar]
  • Sun H., Yao J., Cao Y.-C., Fan D.-Y., Zhang L. (2017) Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis, Int. J. Heat Mass Transfer 104, 227–239. [CrossRef] [Google Scholar]
  • Tan Y., Pan Z., Liu J., Wu Y., Haque A., Connell L.D. (2017) Experimental study of permeability and its anisotropy for shale fracture supported with proppant, J. Nat. Gas Sci. Eng. 44, 250–264. [Google Scholar]
  • Wang D., Yao J., Chen Z., Song W., Sun H. (2019a) Image-based core-scale real gas apparent permeability from pore-scale experimental data in shale reservoirs, Fuel 254, 115596. [CrossRef] [Google Scholar]
  • Wang M., Feng Y., Pande G., Chan A., Zuo W. (2017) Numerical modelling of fluid-induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method, Comput. Geotech. 82, 134–143. [Google Scholar]
  • Wang X., Yao J., Gong L., Sun H., Yang Y., Zhang L., Li Y., Liu W. (2019b) Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks, J. Petrol. Sci. Eng. 183, 106401. [CrossRef] [Google Scholar]
  • Wang Y., Geng F., Yang S., Jing H., Meng B. (2019c) Numerical simulation of particle migration from crushed sandstones during groundwater inrush, J. Hazard. Mater. 362, 327–335. [Google Scholar]
  • Wang Z., Teng Y., Liu M. (2019d) A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy, J. Comput. Phys. 384, 151–169. [Google Scholar]
  • Wu H., Gui N., Yang X., Tu J., Jiang S. (2017) Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation, Int. J. Heat Mass. Trans. 110, 393–405. [CrossRef] [Google Scholar]
  • Yan X., Huang Z., Yao J., Song W., Li Y., Gong L. (2016) Theoretical analysis of fracture conductivity created by the channel fracturing technique, J. Nat. Gas Sci. Eng. 31, 320–330. [Google Scholar]
  • Yan X., Huang Z., Yao J., Zhang Z., Liu P., Li Y., Fan D. (2019) Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model, Adv. Water Resour. 126, 137–154. [Google Scholar]
  • Yang Y., Liu Z., Yao J., Zhang L., Ma J., Hejazi S.H., Luquot L., Ngarta T.D. (2018) Flow simulation of artificially induced microfractures using digital rock and lattice Boltzmann methods, Energies 11,8, 2145. [Google Scholar]
  • Yang Y., Li Y., Yao J., Zhang K., Iglauer S., Luquot L., Wang Z. (2019a) Formation damage evaluation of a sandstone reservoir via pore-scale X-ray computed tomography analysis, J. Petrol. Sci. Eng. 183, 106356. [CrossRef] [Google Scholar]
  • Yang Y.F., Wang K., Zhang L., Sun H., Zhang K., Ma J.S. (2019b) Pore-scale simulation of shale oil flow based on pore network model, Fuel 251, 683–692. [CrossRef] [Google Scholar]
  • Yang Y., Yang H., Tao L., Yao J., Wang W., Zhang K., Luquot L. (2019c) Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning, J. Energy Resour. Technol. 141, 9, 092903. [Google Scholar]
  • Zeng D., Zhang E., Yao G., Zhu H., Xian Q., Shi T., Ding Y., Yi Y. (2018) Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method, Powder Technol. 329, 115–128. [Google Scholar]
  • Zeng J., Li H., Zhang D. (2016) Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method, J. Nat. Gas Sci. Eng. 33, 264–277. [Google Scholar]
  • Zeng Q.-D., Yao J., Shao J. (2019) Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach, Comput. Geotech. 105, 51–68. [Google Scholar]
  • Zhang G., Gutierrez M., Li M. (2017) A coupled CFD-DEM approach to model particle-fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures, Powder Technol. 308, 235–248. [Google Scholar]
  • Zhang J., Ma G., Dai Z., Ming R., Cui X., She R. (2018) Numerical study on pore clogging mechanism in pervious pavements, J. Hydrol. 565, 589–598. [CrossRef] [Google Scholar]
  • Zhang L., Jing W., Yang Y., Yang H., Guo Y., Sun H., Zhao J., Yao J. (2019) The investigation of permeability calculation using digital core simulation technology, Energies 12, 17, 3273. [Google Scholar]
  • Zhang T., Sun S. (2019) A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption, Fuel 246, 196–203. [CrossRef] [Google Scholar]
  • Zhao J.-L., Kang Q., Wang Y., Yao J., Zhang L., Yang Y. (2020) Viscous dissipation and apparent permeability of gas flow in nano-porous media, J. Geophys. Res. Solid Earth e2019JB018667. [PubMed] [Google Scholar]
  • Zhao T., Zhao H., Li X., Ning Z., Wang Q., Zhao W., Zhang J. (2018) Pore scale characteristics of gas flow in shale matrix determined by the regularized lattice Boltzmann method, Chem. Eng. Sci. 187, 245–255. [Google Scholar]
  • Zhou K., Hou J., Sun Q.C., Guo L.L., Bing S.X., Du Q.J., Yao C.J. (2018) A study on particle suspension flow and permeability impairment in porous media using LBM–DEM–IMB simulation method, Transport in Porous Media 124, 3, 681–698. [Google Scholar]
  • Zhu G.-P., Yao J., Sun H., Zhang M., Xie M.-J., Sun Z.-X., Lu T. (2016) The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir, J. Nat. Gas Sci. Eng. 28, 305–316. [Google Scholar]
  • Zou Y., Ma X., Zhang S., Zhou T., Ehlig-Economides C., Li H. (2015) The origins of low-fracture conductivity in soft shale formations: an experimental study, Energy Technol. 3, 12, 1233–1242. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.