Subsurface Fluid Injection and Energy Storage
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Subsurface Fluid Injection and Energy Storage
Numéro d'article 28
Nombre de pages 17
DOI https://doi.org/10.2516/ogst/2020019
Publié en ligne 12 mai 2020
  • Bachu S., Bennion D.B. (2009) Chromatographic partitioning of impurities contained in a CO2 stream injected into a deep saline aquifer: Part 1. Effects of gas composition and in situ conditions, Int. J. Greenhouse Gas Control 3, 4, 458–467. [CrossRef] [Google Scholar]
  • Bachu S., Gunter W.D. (2004) Overview of acid-gas injection operations in western Canada, Seventh International Conference on Greenhouse Gas Control Technologies (GHGT-7), Vancouver, Canada, pp. 1–6. [Google Scholar]
  • Bachu S., Pooladi-Darvish M., Hong H. (2009) Chromatographic partitioning of impurities (H2S) contained in a CO2 stream injected into a deep saline aquifer: Part 2. Effects of flow conditions, Int. J. Greenhouse Gas Control 3, 4, 468–473. [CrossRef] [Google Scholar]
  • Bacon D.H., Ramanathan R., Schaef H.T., Mcgrail B.P. (2014) Simulating geologic co-sequestration of carbon dioxide and hydrogen sulfide in a basalt formation, Int. J. Greenhouse Gas Control 21, 2, 165–176. [CrossRef] [Google Scholar]
  • Bandilla K.W., Celia M.A. (2017) Active pressure management through brine production for basin-wide deployment of geologic carbon sequestration, Int. J. Greenhouse Gas Control 61, 155–167. [CrossRef] [Google Scholar]
  • Bierlein J.A., Kay W.B. (1953) Phase-equilibrium properties of system carbon dioxide-hydrogen sulfide, Ind. Eng. Chem. 45, 3, 618–624. [Google Scholar]
  • Birkholzer J.T., Oldenburg C.M., Zhou Q. (2015) CO2 migration and pressure evolution in deep saline aquifers, Int. J. Greenhouse Gas Control 40, 203–220. [CrossRef] [Google Scholar]
  • Birkholzer J.T., Zhou Q., Tsang C.-F. (2009) Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems, Int. J. Greenhouse Gas Control 3, 2, 181–194. [CrossRef] [Google Scholar]
  • British Columbia Geological Survey (2003) Acid gas injection: A study of existing operations phase I: Final report, Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, p. 71. [Google Scholar]
  • Cantucci B., Montegrossi G., Buttinelli M., Vaselli O., Scrocca D., Quattrocchi F. (2015) Geochemical barriers in CO2 capture and storage feasibility studies, Transp. Porous Media 106, 1, 107–143. [Google Scholar]
  • Carroll J.J., Griffin P.J., Alkafeef S.F. (2009) Review and outlook of subsurface acid gas disposal, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers, Manama, Bahrain, p. 10. [Google Scholar]
  • Chen H., Yang S., Dong C., Zhu G., Jia C., Wei G., Wang Z. (1997) Geological thermal events in Tarim basin, Chin. Sci. Bull. 07, 580–584. [Google Scholar]
  • De Silva G.P.D., Ranjith P.G., Perera M.S.A. (2015) Geochemical aspects of CO2 sequestration in deep saline aquifers: A review, Fuel 155, 128–143. [CrossRef] [Google Scholar]
  • Gao Z., Liu Z., Gao S., Ding Q., Wu S., Liu S. (2016) Characteristics and genetic models of lower Ordovician carbonate reservoirs in southwest Tarim basin, NW China, J. Pet. Sci. Eng. 144, 99–112. [Google Scholar]
  • Gunter W.D., Perkins E.H., Hutcheon I. (2000) Aquifer disposal of acid gases: Modelling of water–rock reactions for trapping of acid wastes, Appl. Geochem. 15, 8, 1085–1095. [Google Scholar]
  • Jia L., Cai C., Jiang L., Zhang K., Li H., Zhang W. (2016) Petrological and geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim basin, NW China, Mar. Pet. Geol. 78, 271–290. [Google Scholar]
  • Khan C., Amin R., Madden G. (2013) Effects of CO2 and acid gas injection on enhanced gas recovery and storage, Journal of Petroleum Exploration and Production Technology 3, 1, 55–60. [Google Scholar]
  • Knauss K.G., Johnson J.W., Steefel C.I. (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol. 217, 3, 339–350. [Google Scholar]
  • Lasaga A.C., Soler J.M., Ganor J., Burch T.E., Nagy K.L. (1994) Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta 58, 10, 2361–2386. [Google Scholar]
  • Li C., Zhang F., Lyu C., Hao J., Song J., Zhang S. (2016) Effects of H2S injection on the CO2-brine-sandstone interaction under 21 MPa and 70 °C, Mar. Pollut. Bull. 106, 1, 17–24. [Google Scholar]
  • Li Q., Li X., Niu Z., Kuang D., Ma J., Liu X., Sun Y., Li X. (2017) Effects of acid gas reinjection on enhanced natural gas recovery and carbon dioxide geological storage: Investigation of the right bank of the amu darya river, in Carbon dioxide capture and acid gas injection, Y. Wu, J.J. Carroll, W. Zhu (eds), Advances in natural gas engineering, Wiley, New York, pp. 221–244. doi: 10.1002/9781118938706.ch12. [CrossRef] [Google Scholar]
  • Li Q., Liu X., Du L., Bai B., Fang Z., Jing M., Li X. (2013) Economics of acid gas reinjection with comparison to sulfur recovery in China, Energy Procedia 37, 2505–2510. [Google Scholar]
  • Liang S., Deng Y., Zhou W. (2016) Optimization selection of injecting N2 volume in single well of Tahe fractured vuggy reservoir, Drill. Prod. Technol. 39, 4, 60–62. [Google Scholar]
  • Liu B., Xu J., Li Z., Malekian R., Xu Z. (2018) Modeling of CO2 transport and pressure buildup in reservoirs during CO2 storage in saline aquifers: A case in Dongying Depression in China, Environ. Earth Sci. 77, 5, 158. [Google Scholar]
  • Liu X., Li Q., Du L., Li X. (2012) Economic comparison of both acid-gas reinjection and sulfur recovery in high-sour gasfields, Natural Gas Technol. Econ. 6, 4, 55–59. [Google Scholar]
  • Marini L. (2006) Geological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling, Elsevier. [Google Scholar]
  • Meng Q., Jiang X., Li D., Xie Q. (2015) Numerical simulations of pressure buildup and salt precipitation during carbon dioxide storage in saline aquifers, Comput. Fluids 121, 92–101. [Google Scholar]
  • Miwa M., Shiozawa Y., Saito Y., Tarmoom I.O. (2002) Sour gas injection project, in: Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers, Abu Dhabi, United Arab Emirates, p. 11. [Google Scholar]
  • Palandri J.L., Kharaka Y.K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, Geological Survey Menlo Park, CA. [Google Scholar]
  • Pruess K., Battistelli A. (2002) TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media, Earth Sciences Division, Lawrence Berkeley National Laboratory. [Google Scholar]
  • Pruess K., García J. (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers, Environmental Geology 42, 2, 282–295. [CrossRef] [Google Scholar]
  • Pruess K., Müller N. (2009) Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation, Water Resour. Res. 45, 3. [Google Scholar]
  • Reagan M. (2006) WebGasEOS 1.0 user guide, Earth Sciences Division, Lawrence Berkeley National Laboratory. [Google Scholar]
  • Schaef H.T., McGrail B.P., Owen A.T. (2010) Carbonate mineralization of volcanic province basalts, Int. J. Greenhouse Gas Control 4, 2, 249–261. [CrossRef] [Google Scholar]
  • Schaef H.T., Mcgrail B.P., Owen A.T., Arey B.W. (2013) Mineralization of basalts in the CO2–H2O–H2S system, Int. J. Greenhouse Gas Control 16, 4, 187–196. [CrossRef] [Google Scholar]
  • Shen A., Zheng J., Chen Y., Ni X., Huang L. (2016) Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim basin, NW China, Pet. Explor. Dev. 43, 3, 375–385. [CrossRef] [Google Scholar]
  • Talman S. (2015) Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known, Int. J. Greenhouse Gas Control 40, 267–291. [CrossRef] [Google Scholar]
  • Xiao Y., Xu T., Pruess K. (2009) The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling, Energy Procedia 1, 1, 1783–1790. [Google Scholar]
  • Xu T., Apps J.A., Pruess K., Yamamoto H. (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chem. Geol. 242, 3, 319–346. [Google Scholar]
  • Xu T., Spycher N., Sonnenthal E., Zheng L., Pruess K. (2012) Toughreact user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, version 2.0, Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, p. 94720. [Google Scholar]
  • Yu Q., Wen Z., Tang Y. (2011) Geochemical characteristics of Ordovician crude oils in the northwest of the Tahe oil field, Tarim basin, Chin. J. Geochem. 30, 1, 93–98. [CrossRef] [Google Scholar]
  • Zhang W., Xu T., Li Y. (2011) Modeling of fate and transport of coinjection of H2S with CO2 in deep saline formations, J. Geophys. Res. Solid Earth 116, B02202. [Google Scholar]
  • Zhao R., Cheng J. (2017) Effects of temperature on salt precipitation due to formation dry-out during CO2 injection in saline aquifers, Greenhouse Gases Sci. Technol. 7, 4, 624–636. [CrossRef] [Google Scholar]
  • Zheng L., Spycher N., Birkholzer J., Xu T., Apps J., Kharaka Y. (2013) On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers, Int. J. Greenhouse Gas Control 14, 113–127. [CrossRef] [Google Scholar]
  • Zheng L., Spycher N., Xu T., Apps J., Kharaka Y., Birkholzer J.T. (2010) Modeling studies on the transport of Benzene and H2S in CO2-water systems, Office of Scientific & Technical Information Technical Reports. [CrossRef] [Google Scholar]
  • Zhou Q., Birkholzer J.T., Mehnert E., Lin Y.-F., Zhang K. (2010) Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment, Groundwater 48, 4, 494–514. [CrossRef] [Google Scholar]
  • Zhu J., Parris T.M., Richard Bowersox J., Harris D.C. (2013) Modeling CO2–brine–rock interactions in the knox group: Implications of a deep carbon storage field test in western Kentucky, Appl. Geochem. 37, 29–42. [Google Scholar]
  • Ziabakhsh-Ganji Z., Kooi H. (2012) An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface CO2 storage, Int. J. Greenhouse Gas Control 11, S21–S34. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.