Numerical methods and HPC
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numerical methods and HPC
Numéro d'article 24
Nombre de pages 20
DOI https://doi.org/10.2516/ogst/2018071
Publié en ligne 11 mars 2019
  • von Terzaghi K. (1944) Theoretical soil mechanics, Chapman, London. [Google Scholar]
  • Biot M.A. (1941) Consolidation settlement under a rectangular load distribution, J. Appl. Phys. 12, 5, 426–430. [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155–164. [Google Scholar]
  • Settari A., Mourits F.M. (1994) Coupling of geomechanics and reservoir simulation models, in: H.J. Siriwardane, M.M. Zema (eds), Computer methods and advances in geomechanics, Balkema, Rotterdam, pp. 2151–2158. [Google Scholar]
  • Settari A., Mourits F.M. (1998) A coupled reservoir and geomechanical simulation system, SPE J. 3, 219–226. [Google Scholar]
  • Gai X., Dean R.H., Wheeler M.F., Liu R. (2003) Coupled geomechanical and reservoir modeling on parallel computers, The SPE Reservoir Simulation Symposium, Houston, Texas, February 3–5. [Google Scholar]
  • Gai X., Sun S., Wheeler M.F., Klie H. (2005) A timestepping scheme for coupled reservoir flow and geomechanics on nonmatching grids, SPE Annual Technical Conference and Exhibition, SPE97054. [Google Scholar]
  • Gai X. (2004) A coupled geomechanics and reservoir flow model on parallel computers, PhD Thesis, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Dean R.H., Gai X., Stone C.M., Minkoff S.E. (2006) A comparison of techniques for coupling porous flow and geomechanics, SPE J. 11, 1, 132–140. [CrossRef] [Google Scholar]
  • Girault V., Kumar K., Wheeler M.F. (2016) Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci. 20, 997–1011. [Google Scholar]
  • Almani T., Kumar K., Dogru A., Singh G., Wheeler M.F. (2016) Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng. 311, 180–207. [Google Scholar]
  • Almani T., Kumar K., Singh G., Wheeler M.F. (2016) Stability of multirate explicit coupled of geomechanics with flow in a poroelastic medium, ICES Report 16–12, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Almani T., Kumar K., Wheeler M.F. (2017) Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics, Comput. Geosci. 21, 5, 1157–1172. [Google Scholar]
  • Almani T., Dogru A.H., Kumar K., Singh G., Wheeler M.F. (2016) Convergence of multirate iterative coupling of geomechanics with flow in a poroelastic medium, Saudi Aramco J. Technol. [Google Scholar]
  • Mikelić A., Wheeler M.F. (2013) Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. 17, 455–461. [Google Scholar]
  • Mikelić A., Wang B., Wheeler M.F. (2014) Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci. 18, 325–341. [Google Scholar]
  • Kim J., Tchelepi H.A., Juanes R. (2009) Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, The SPE Reservoir Simulation Symposium, Houston, Texas, SPE119084. [Google Scholar]
  • Kim J., Tchelepi H.A., Juanes R. (2011) Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng. 200, 13–16, 1591–1606. [Google Scholar]
  • Gai X. (2004) A coupled geomechanics and reservoir flow model on parallel computers, PhD Thesis, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Castelletto N., White J.A., Tchelepi H.A. (2015) Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech. 39, 1593–1618. [Google Scholar]
  • Castelletto N., White J.A., Tchelepi H.A. (2014) A unified framework for fully implicit and sequential-implicit schemes for coupled poroelasticity, ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, September 8–11. [Google Scholar]
  • Kumar K., Almani T., Singh G., Wheeler M.F. (2016) Multirate undrained splitting for coupled flow and geomechanics in porous media, Springer International Publishing, Cham, pp. 431–440. [Google Scholar]
  • White D., Ganis B., Liu R., Wheeler M.F. (2017) A near wellbore study with a Drucker-Prager plasticity model coupled with a parallel compositional reservoir simulator, SPE Reservoir Simulation Symposium. [Google Scholar]
  • Borregales M., Radu F.A., Kumar K., Nordbotten J.M. (2018) Robust iterative schemes for non-linear poromechanics, Comput. Geosci. 22, 4, 1021–1038. [Google Scholar]
  • da Silva R.O.S., Murad M.A.M., Obregon J.A.L.O. (2018) A new fixed-stress split scheme in poroplastic media incorporating general plastic porosity constitutive theories, ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery, September 3–6. [Google Scholar]
  • Dana S., Ganis B., Wheeler M.F. (2018) A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys. 352, 1–22. [Google Scholar]
  • Bause M., Radu F.A., Köcher U. (2017) Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Eng. 320, 745–768. [Google Scholar]
  • Borregales M., Kumar K., Radu F.A., Rodrigo C., Gaspar F.J. (2018) A parallel-in-time fixed-stress splitting method for Biot’s consolidation model, arXiv preprint arXiv:1802.00949. [Google Scholar]
  • Rodrigo C., Gaspar F.J., Hu X., Zikatanov L.T. (2016) Stability and monotonicity for some discretizations of the Biots consolidation model, Comput. Methods Appl. Mech. Eng. 298, 183–204. [Google Scholar]
  • Odsaeter L.H., Wheeler M.F., Kvamsdal T., Larson M.G. (2017) Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media, Comput. Methods Appl. Mech. Eng. 315, 1, 799–830. [Google Scholar]
  • Lee S., Lee Y.-J., Wheeler M.F. (2016) A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems, SIAM J Sci. Comput. 38, 3, A1404–A1429. [Google Scholar]
  • Iding M., Ringrose P. (2010) Evaluating the impact of fractures on the performance of the In Salah CO2 storage site, Int. J. Greenhouse Gas Control 4, 2, 242–248. The Ninth International Conference on Greenhouse Gas Control Technologies. [CrossRef] [Google Scholar]
  • Mikelić A., Wheeler M.F. (2012) On the interface law between a deformable porous medium containing a viscous fluid and an elastic body, Math. Models Methods Appl. Sci. 22, 11, 1250031. [Google Scholar]
  • Adams R.A. (1975) Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York/London. [Google Scholar]
  • Nečas J. (1967) Les méthodes directes en théorie des équations elliptiques, Masson, Paris. [Google Scholar]
  • Lions J.L., Magenes E. (1972) Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, New York. [Google Scholar]
  • Grisvard P. (1985) Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics, Pitman, Boston, MA. [Google Scholar]
  • Girault V., Raviart P.A. (1986) Finite element methods for Navier-Stokes equations: Theory and algorithms, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin. [Google Scholar]
  • Girault V., Wheeler M.F., Ganis B., Mear M.E. (2015) A lubrication fracture model in a poro-elastic medium, Math. Models Methods Appl. Sci. 25, 4, 587–645. [Google Scholar]
  • Coussy O. (2003) Poromechanics, Wiley-Blackwell. [CrossRef] [Google Scholar]
  • Girault V., Pencheva G.V., Wheeler M.F., Wildey T.M. (2011) Domain decomposition for poroelasticity and elasticity with DG jumps and mortars, Math. Models Methods Appl. Sci. 21, 1, 169–213. [Google Scholar]
  • Girault V., Pencheva G.V., Wheeler M.F., Wildey T.M. (2009) Domain decomposition for linear elasticity with DG jumps and mortars, Comput. Methods Appl. Mech. Eng. 198, 21–26, 1751–1765. [Google Scholar]
  • Ciarlet P.G. (1991) Basic error estimates for elliptic problems, in: Ciarlet P.G., Lions J.L. (eds), Handbook of numerical analysis, Vol. II, Elsevier Sciences, North-Holland, Amsterdam, pp.17–351. [Google Scholar]
  • Scott L.R., Zhang S. (1990) Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 483–493. [CrossRef] [MathSciNet] [Google Scholar]
  • Mikelić A., Wheeler M.F. (2013) Convergence of iterative coupling for coupled flow and mechanics, Comput. Geosci. 17, 3, 455–461. [Google Scholar]
  • Verruijt A. (2013) Theory and problems of poroelasticity, Delft University of Technology. [Google Scholar]
  • Ingram R., Wheeler M.F., Yotov I. (2010) A multipoint flux mixed finite element method on hexahedra, SIAM J. Numer. Anal. 48, 4, 1281–1312. [Google Scholar]
  • Falgout R.D., Yang U.M. (2002) hypre: A library of high performance preconditioners, in: Sloot P.M.A., Hoekstra A.G., Tan C.J.K., Dongarra J.J. (eds), Computational Science – ICCS 2002, Springer, Berlin, Heidelberg, pp. 632–641. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.