Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 18
Nombre de pages 19
Publié en ligne 12 juin 2018
  • Albertz M., Lingrey S. (2012) Critical state finite element models of contractional fault-related folding: Part 1. Structural analysis. Tectonophysics 576–577, 133–149. [CrossRef] [Google Scholar]
  • Albertz M., Sanz P.F. (2012) Critical state finite element models of contractional fault-related folding: Part 2. Mechanical analysis. Tectonophysics 576–577, 150–170. [CrossRef] [Google Scholar]
  • Bernaud D., Dormieux L., Maghous S. (2006) A constitutive and numerical model for mechanical compaction in sedimentary basins. Computers Geotechnics 33, 6–7, 316–329. [CrossRef] [Google Scholar]
  • Bolås H.M.N., Hermanrud C., Teige G.M.G. (2004) Origin of overpressures in shales: Constraints from basin modeling. AAPG Bulletin 88, 193–211. [CrossRef] [Google Scholar]
  • Boyer S.E., Elliott D. (1982) Thrust systems. AAPG Bulletin 66, 9, 1196–1230. [Google Scholar]
  • Butlers R.W.H., Paton D.A. (2010) Evaluating lateral compaction in deepwater fold and thrust belts: How much are we missing from “nature's sandbox”? GSA Today 20, 3, 4–10. [CrossRef] [Google Scholar]
  • Chauvin B.P., Lovely P., Stockmeyer J.M., Plesch A., Caumon G., Shaw J.H. (2018) Validating novel boundary conditions for 3D mechanics-based restoration: an extensional sandbox model example. AAPG Bulletin 102, 2, 245–266. [CrossRef] [Google Scholar]
  • Crook A.J.L. (2013) ParaGeo: a finite element model for coupled simulation of the evolution of geological structures. Three Cliffs Geomechanical Analysis, Swansea, UK. [Google Scholar]
  • Crook A.J.L., Willson S.M., Yu J.G., Owen D.R.J. (2006) Predictive modelling of structure evolution in sandbox experiments. J. Struct. Geol. 28, 5, 729–744. [CrossRef] [Google Scholar]
  • Dahlstrom C.D.A. (1969) Balanced cross sections. Can. J. Earth Sci. 6, 743–757. [CrossRef] [Google Scholar]
  • Durand-Riard P., Guzofski C., Caumon G., Titeux M. (2012) Handling natural complexity in three-dimensional geomechanical restoration, with application to the recent evolution of the outer fold and thrust belt, deep-water Niger Delta. AAPG Bulletin 97, 1, 87–102. [CrossRef] [Google Scholar]
  • Durand-Riard P., Salles L., Ford M., Caumon G., Pellerin J. (2011) Understanding the evolution of syn-depositional folds: Coupling decompaction and 3D sequential restoration. Marine Petroleum Geol. 28, 8, 1530–1539. [CrossRef] [Google Scholar]
  • Durand-Riard P., Shaw J.H., Plesch A., Lufadeju G. (2013) Enabling 3D geomechanical restoration of strike- and oblique-slip faults using geological constraints, with applications to the deep-water Niger Delta. J. Struct. Geol. 48, 3, 33–44. [CrossRef] [Google Scholar]
  • Estublier A., Fornel A., Brosse E., Houel P., Lecomte J.C., Delmas J., Vincké O. (2017) Simulation of a Potential CO2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO2 Injection. Oil & Gas Sci. Technol. − Rev. IFP Energies nouvelles 72, 22 [CrossRef] [Google Scholar]
  • Faille I., Thibaut M., Cacas M.-C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins. Oil & Gas Sci. Technol – Rev. IFP Energies nouvelles 69, 4, 529–553 [CrossRef] [EDP Sciences] [Google Scholar]
  • Fujii Y. (2012) Weakness plane model to simulate effects of stress states on rock strengths. True Triaxial Testing of Rocks Workshop, Beijing, China. [Google Scholar]
  • Fujii Y., Kodama J., Fukuda D. (2013) 3-D Weakness Plane Model to Clarify the Mechanisms of Influences of Stress States on Rock Strengths. J. Min. Mater. Process. Inst. Jpn. 129, 7, 467–471. [Google Scholar]
  • Gibbs A.D. (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J. Struct. Geology 5, 153–160. [Google Scholar]
  • Griffiths P.A., Jones S., Salter N., Schaefer F., Osfield R., Reiser H. (2002) Flexural slip unfolding: a new technique for 3-D flexural-slip restoration. J. Struct. Geol. 24, 4, 773–782. [CrossRef] [Google Scholar]
  • Gutierrez M., Wangen M. (2005) Modeling of compaction and overpressuring in sedimentary basins. Marine Petrol. Geol. 22, 351–363. [CrossRef] [Google Scholar]
  • Guzofski C., Joachim Mueller P, Shaw J.H., Muron P., Medwedeff D.A., Bilotti F., Rivero C. (2009) Insights into the mechanisms of fault-related folding provided by volumetric structural restorations using spatially varying mechanical constraints. AAPG Bulletin 93, 4, 479–502. [CrossRef] [Google Scholar]
  • Hantschel T., Kauerauf A.I. (2009) Fundamentals of Basin and Petroleum Systems Modeling. Springer-Verlag, Berlin [Google Scholar]
  • Hardy S., Finch E. (2007) Mechanical stratigraphy and the transition from trishear to kink-band fault-propagation fold forms above blind basement thrust faults:a discrete-element study. Marine Petrol. Geol. 24, 75–90. [CrossRef] [Google Scholar]
  • Higgins S., Clarke B., Davies R.J., Cartwright J. (2009) Internal geometry and growth history of thrust-related anticline in a deep water fold belt. J. Struct. Geol. 31, 12, 1597–1611. [CrossRef] [Google Scholar]
  • Kjeldstad A., Skogseid J., Langtangen H.P., Bjørlykke K., Høeg K. (2003) Differential loading by prograding sedimentary wedges on continental margins: An arch-forming mechanism. J. Geophys. Res. 108, B1, 2036). [Google Scholar]
  • Krueger S., Grant N. (2011). The growth history of toe thrusts of the Niger Delta and the role of pore pressure. Thrust fault-related folding: AAPG Memoir. 94, 357–390. [Google Scholar]
  • Kusznir N., Roberts A.M., Morley C. K. (1995) Forward and reverse modelling of rift basin formation. Hydrocarbon Habitat in Rift Basins. J. J. Lambiase. London, Geological Society. 80: 33–56. [Google Scholar]
  • Lewis R.W., Schrefler B.A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley, Chichester, UK [Google Scholar]
  • Lopez-Mir B., Muñoz J.A., García J. (2014) Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. J. Struct. Geol. 69: 147–162. [CrossRef] [Google Scholar]
  • Lovely P., Flodin E., Guzofski C., Maerten F., Pollard D.D. (2012) Pitfalls among the promises of mechanics-based restoration: Addressing implications of unphysical boundary conditions. J. Struct. Geol 41, 47–63. [CrossRef] [Google Scholar]
  • Luo G., Hudec M.R., Flemings P.B., Nikolinakou M.A. (2017) Deformation, stress and pore pressure in an evolving suprasalt basin. J. Geophys. Res: Solid Earth 122, 7, 5663–5690. [Google Scholar]
  • Luo G., Nikolinakou M.A., Flemings P.B., Hudec M.R. (2012) Geomechanical modeling of stresses adjacent to salt bodies: Part 1—Uncoupled models. AAPG Bulletin 96, 1, 43–64. [CrossRef] [Google Scholar]
  • Maerten L., Maerten F. (2006) Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: technique and industry applications. AAPG Bulletin 90, 8, 1201–1226. [CrossRef] [Google Scholar]
  • Maghous S., Brüch A., Bernaud D., Dormieux L., Braun A. L. (2014) Two-dimensionalfinite element analysis of gravitational and lateraldriven deformation in sedimentary basins. Int. J. Numer. Anal. Meth. Geomech. 38, 725–746. [CrossRef] [Google Scholar]
  • Moore G.F., Saffer D., Studer M., Costa Pisani P. (2011) Structural restoration of thrusts at the toe of the Nankai Trough accretionary prism off Shikoku Island, Japan: Implications for dewatering processes. Geochem. Geophys. Geosyst. 12, 5, 1–15. [Google Scholar]
  • Moretti I., Lepage F., Guiton M. (2006) KINE3D: a new 3D restoration method based on a mixed approach linking geometry and geomechanics. Oil Gas Sci. Technol. 61, 2, 277–289. [CrossRef] [Google Scholar]
  • Muron P. (2005) 3-D numerical methods for the restoration of faulted geological structures. Lorraine, France, Institut National Polytechnique de Lorraine: 131. [Google Scholar]
  • Nikolinakou M.A., Flemings P.B., Hudec M.R. (2014) Modeling stress evolution around a rising salt diapir. Marine Petrol. Geol. 51, 230–238. [CrossRef] [Google Scholar]
  • Nikolinakou M.A., Luo G., Hudec M.R., Flemings P.B. (2012) Geomechanical modeling of stresses adjacent to salt bodies: Part 2—Poroelastoplasticity and coupled overpressures. AAPG Bulletin 96, 1, 65–85. [CrossRef] [Google Scholar]
  • Nyantakyi E.K., Tao L., Wangshui H., Borkloe J.K. (2014) The role of geomechanical-based structural restoration in reservoir analysis of deepwater Niger Delta, Nigeria. Acta Geodaetica et Geophysica 49, 4, 415–429. [CrossRef] [Google Scholar]
  • Nygård R., Gutierrez M., Bratli R.K., Høeg K. (2006) Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Marine Petrol. Geol. 23, 2, 201–212. [CrossRef] [Google Scholar]
  • Nygård R., Gutierrez M., Gautam R., Høeg K. (2004a) Compaction behaviour of argillaceous sediments as function of diagenesis. Marine Petrol. Geol. 21, 349–362. [CrossRef] [Google Scholar]
  • Nygård R., Gutierrez M., Høeg K., Bjørlykke K. (2004b) Influence of burial history on microstructure and compaction behaviour of Kimmeridge clay. Petroleum Geoscience 10, 3, 259–270. [CrossRef] [Google Scholar]
  • Obradors-Prats J., Rouainia M., Aplin A.C., Crook A.J.L. (2016) Stress and pore pressure in complex tectonic settings predicted with coupled, 3D geomechanical-fluid flow models. Marine Petrol. Geol. 76, 9, 464–477. [CrossRef] [Google Scholar]
  • Obradors-Prats J., Rouainia M., Aplin A.C., Crook A.J.L. (2017a) Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach. Marine Petroleum Geol. 79, 1, 31–43. [CrossRef] [Google Scholar]
  • Obradors-Prats J., Rouainia M., Aplin A.C., Crook A.J.L. (2017b) Hydromechanical Modeling of Stress, Pore Pressure, and Porosity Evolution in Fold-and-Thrust Belt Systems. J. Geophys. Res: Solid Earth 122, 11, 9383–9403. [CrossRef] [Google Scholar]
  • Peric D., Crook A.J.L. (2004) Computational strategies for predictive geology with reference to salt tectonics. Comput. Methods Appl. Mech. Eng. 193, 48–51, 5195–5222. [CrossRef] [Google Scholar]
  • Roberts D.T., Crook A.J.L., Profit M.L., Cartwright J.A. (2015). Investigating the Evolution of Polygonal Fault Systems Using Geomechanical Forward Modeling. 49th US Rock Mechanics/Geomechanics Symposium. San Francisco, CA, USA, ARMA. [Google Scholar]
  • Rowan M.G., Kligfield R. (1989) Cross-section restoration and balancing as an aid to seismic interpretation in extensional terrains. AAPG Bulletin 73, 955–966. [Google Scholar]
  • Rowan M.G., Ratliff R.A. (2012) Cross-section restoration of salt-related deformation: Best practices and potential pitfalls. J. Struct. Geol. 41, 8, 24–37. [CrossRef] [Google Scholar]
  • Ruh J.B. (2017) Effect of fluid pressure distribution on the structural evolution of acretionary wedges. Terra Nova 29, 202–210. [CrossRef] [Google Scholar]
  • Schneider F., Potdevin J.L., Wolf S., Faille I. (1996) Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics 263, 1–4, 307–317. [CrossRef] [Google Scholar]
  • Smart K.J., Ferrill D.A., Morris A.P., McGinnis R.N. (2012) Geomechanical modeling of stress and strain evolution during contractional fault-related folding. Tectonophysics 171–196. [CrossRef] [Google Scholar]
  • Spinelli G.A., Mozley P.S., Tobin H.J., Underwood M.B., Hoffman N. W., Bellew G.M. (2007) Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone. GSA Bulletin 119, 3/4, 377–390. [CrossRef] [Google Scholar]
  • Thibaut M., Jardin A., Faille I., Willien F., Guichet X. (2014) Advanced Workflows for Fluid Transfer in Faulted Basins. Oil & Gas Sci. Technol − Rev. IFP Energies nouvelles 69, 4, 573–584. [CrossRef] [Google Scholar]
  • Thornton D.A., Crook A.J.L. (2014) Predictive modelling of the evolution of fault structure: 3-D modelling and coupled geomechanical/flow simulation. Rock Mech. Rock Eng. 47, 5, 1533–1549. [CrossRef] [Google Scholar]
  • Welch M.J., Knipe R.J., Souque C., Davies R.K. (2009) A Quadshear kinematic model for folding and clay smear development in fault zones. Tectonophysics 471, 3–4, 186–202. [CrossRef] [Google Scholar]
  • Woillez M.N., Souque C., Rudkiewicz J.L., Willien F., Cornu T. (2017) Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling. Oil & Gas Sci. Technol − Rev. IFP Energies nouvelles 72 31. [Google Scholar]
  • White S.H., Bretan P.G., Rutter E.H. (1986) Fault-Zone reactivation: kinematics and mechanisms. Philosophical Transactions of the Royal Society of London. Series A, Math. Phys. Sci. 317, 1539, 81–97 [CrossRef] [Google Scholar]
  • Wood D.M. (1990) Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, UK [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.