Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 26
Nombre de pages 7
Publié en ligne 7 août 2018
  • Lu J., Liyanage P.J., Solairaj S., Adkins S., Arachchilage G.P., Kim D.H., Britton C., Weerasooriya U., Pope G.A. (2014) New surfactant developments for chemical enhanced oil recovery, J. Petrol. Sci. Eng. 120, 94–101. [CrossRef] [Google Scholar]
  • Hirasaki G., Miller C.A., Puerto M. (2011) Recent advances in surfactant EOR, SPE J. 16, 889–907. [Google Scholar]
  • Malik I.A., Al-Mubaiyedh U.A., Sultan A.S., Kamal M.S., Hussein I.A. (2016) Rheological and thermal properties of novel surfactant-polymer systems for EOR applications, Can. J. Chem. Eng. 94, 1693–1699. [CrossRef] [Google Scholar]
  • Lai N., Wu T., Ye Z., Zhang Y., Zhou N., Zeng F. (2016) Hybrid hyperbranched polymer based on modified Nano-SiO2 for enhanced oil recovery, Chem. Lett. 45, 1189–1191. [CrossRef] [Google Scholar]
  • Nguyen P., Fadaei H., Sinton D. (2014) Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery, Energy Fuels 28, 6221–6227. [CrossRef] [Google Scholar]
  • Rossen W., Ocampo A., Restrepo A., Cifuentes H., Marin J. (2017) Long-time diversion in surfactant-alternating-gas foam enhanced oil recovery from a field test, SPE Reserv. Evalu. Eng. 20, 1189–1191. [Google Scholar]
  • Brown L.R. (Jun 2010) Microbial enhanced oil recovery (MEOR), Curr. Opin. Microbiol. 13, 316–320. [CrossRef] [PubMed] [Google Scholar]
  • Patel J., Borgohain S., Kumar M., Rangarajan V., Somasundaran P., Sen R. (2015) Recent developments in microbial enhanced oil recovery, Renew. Sust. Energ. Rev. 52, 1539–1558. [Google Scholar]
  • Meng X., Zhang Z.Z., Wang S., Shen A. (2013) Biodegradation of paraffin crude oil by an Isolated Pseudomonas aeruginosa N2 for enhanced oil recovery, Adv. Mater. Res. 616–618, 924–930. [Google Scholar]
  • Li L., Khorsandi S., Johns R.T., Dilmore R.M. (2015) CO2 enhanced oil recovery and storage using a gravity-enhanced process, Int. J. Greenhouse Gas Control 42, 502–515. [CrossRef] [Google Scholar]
  • Du B., Cheng L. (2014) Experimental study of enhanced oil recovery with CO2 slug+N2 flood in low permeability reservoir, Geosyst. Eng. 17, 279–286. [CrossRef] [Google Scholar]
  • Berg S., Armstrong R.T., Georgiadis A., Ott H., Schwing A., Neiteler R., Brussee N., Makurat A., Rucker M., Leu L., Wolf, M. (2015) Onset of oil mobilization and nonwetting-phase cluster-size distribution, Petrophysics 56, 15–22. [Google Scholar]
  • Landry C.J., Karpyn Z.T., Ayala O. (2014) Pore-scale lattice Boltzmann Modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer, Transp. Porous Media 103, 449–468. [CrossRef] [Google Scholar]
  • Li Y., Li J., Ding S., Sun X. (2014) Characterization of remaining oil after polymer flooding by laser scanning confocal fluorescence microscopy, J. Dispers. Sci. Technol. 35, 898–906. [CrossRef] [Google Scholar]
  • Gravesen P., Branebjerg J., Jensen O.S. (1993) Microfluidics – a review, J. Micromech. Microeng. 3, 168. [CrossRef] [Google Scholar]
  • Liu Y., Jiang X. (2017) Why microfluidics? Merits and trends in chemical synthesis, Lab Chip 17, 3960–3978. [CrossRef] [PubMed] [Google Scholar]
  • Mahesh K., Vaidya S. (2017) Microfluidics: A boon for biological research, Current Science 112, 2021. [CrossRef] [Google Scholar]
  • Sinton D. (2014) Energy: the microfluidic frontier, Lab Chip 14, 3127–3134. [CrossRef] [PubMed] [Google Scholar]
  • Begolo S., Colas G., Viovy J.L., Malaquin L. (2011) New family of fluorinated polymer chips for droplet and organic solvent microfluidics, Lab Chip 11, 508. [CrossRef] [PubMed] [Google Scholar]
  • Becker H., Locascio L.E. (2002) Polymer microfluidic devices, Talanta 56, 267–287. [CrossRef] [PubMed] [Google Scholar]
  • Othman R., Vladisavljević G.T., Nagy Z.K. (2015) Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics, Chem. Eng. Sci. 137, 119–130. [CrossRef] [Google Scholar]
  • Kim S.M., Burns M.A., Hasselbrink E.F. (2006) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip, Anal. Chem. 78, 4779–4785. [CrossRef] [PubMed] [Google Scholar]
  • Leïchlé T., Bourrier D. (2015) Integration of lateral porous silicon membranes into planar microfluidics, Lab Chip 15, 833–838. [CrossRef] [PubMed] [Google Scholar]
  • Vourdas N., Tserepi A., Boudouvis A.G., Gogolides E. (2008) Plasma processing for polymeric microfluidics fabrication and surface modification: Effect of super-hydrophobic walls on electroosmotic flow, Microelectron. Eng. 85, 1124–1127. [CrossRef] [Google Scholar]
  • Tu Q., Wang J.C., Zhang Y., Liu R., Liu W., Ren L., Shen S., Xu J., Zhao L., Wang J. (2012) Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis, Rev. Anal. Chem. 31, 177–192. [Google Scholar]
  • Quennouz N., Ryba M., Argillier J.F., Herzhaft B., Peysson Y., Pannacci N. (2014) Microfluidic study of foams flow for Enhanced Oil Recovery (EOR), Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 457–466. [CrossRef] [Google Scholar]
  • Vial C., Narchi I. (2013) Development of a Model Foamy Viscous Fluid, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 481–497. [CrossRef] [Google Scholar]
  • Marciales A., Babadagli T. (2016) Pore scale visual investigations on solvent retrieval during oil recovery at elevated temperatures: A micromodel study, Chem. Eng. Res. Des. 106, 59–73. [CrossRef] [Google Scholar]
  • Lacey M., Hollis C., Oostrom M., Shokri N. (2017) Effects of pore and grain size on water and polymer flooding in micromodels, Energy Fuels 31, 9026–9034. [CrossRef] [Google Scholar]
  • Zhao B., MacMinn C.W., Juanes R. (2016) Wettability control on multiphase flow in patterned microfluidics, Proc. Natl. Acad. Sci. USA 113, 10251–10256. [Google Scholar]
  • Ayela F., Cherief W., Colombet D., Ledoux G., Martini M., Mossaz S., Podbevsek D., Qiu X., Tillement O. (2017) Hydrodynamic cavitation through “Labs on a Chip”: from fundamentals to applications, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 19. [CrossRef] [Google Scholar]
  • Fan Y., Liu Y., Li H., Foulds I.G. (2012) Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics, J. Micromech. Microeng. 22, 027001. [CrossRef] [Google Scholar]
  • Mathur A., Roy S.S., Mclaughlin J.A. (2010) Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications, J. R. Soc. Interface 7, 1129–1133. [CrossRef] [PubMed] [Google Scholar]
  • Liqun D.U., Chang H., Song M., Liu C. (2012) The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips, Microsyst. Technol. 18, 815–822. [CrossRef] [Google Scholar]
  • Hong T.F., Ju W.J., Wu M.C., Tai C.H., Tsai C.H., Fu L.M. (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser, Microfluid. Nanofluid. 9, 1125–1133. [CrossRef] [Google Scholar]
  • Kar A., Chiang T.Y., Rivera I.O., Sen A., Velegol D. (2015) Enhanced transport into and out of dead-end pores, ACS Nano. 9, 746–753. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.