- Ahmadi M.H., Ahmadi M.-A., Maleki A., Pourfayaz F., Bidi M., Açıkkalp E. (2017) Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas, Renew. Sustain. Energy Rev. 78, 80–92, https://doi.org/10.1016/j.rser.2017.04.097. [CrossRef] [Google Scholar]
- Ahmadi M.H., Ahmadi M.A., Feidt M. (2016) Performance optimization of a solar-driven multi-step irreversible Brayton cycle based on a multi-objective genetic algorithm, Oil & Gas Science Technology - Rev. IFP Energies nouvelles 71, 16, https://doi.org/10.2516/ogst/2014028. [CrossRef] [Google Scholar]
- Araujo S.A. de Poldi K.C., Smith J. (2014) A Genetic Algorithm for the One-dimensional Cutting Stock Problem with Setups, Pesqui. Oper. 34, 2, 165–187, https://doi.org/10.1590/0101-7438.2014.034.02.0165. [Google Scholar]
- Beasley J.E., Chu P.C. (1996) A genetic algorithm for the set covering problem, Eur. J. Oper. Res. 94, 2, 392–404, https://doi.org/10.1016/0377-2217(95)00159-X. [CrossRef] [Google Scholar]
- Buttlar D., Farrell J., Nichols B. (1996) PThreads Programming: a POSIX Standard for better multiprocessing, O'Reilly Media, Beijing. [Google Scholar]
- Can B., Kabir S. (2012) Probabilistic production forecasting for unconventional reservoirs with stretched exponential production decline model, SPE Reserv. Eval. Eng. 15, 01, 41–50, https://doi.org/10.2118/143666-PA. [CrossRef] [Google Scholar]
- Carvalho M.C.A., Pinto J.M. (2006) An MILP model and solution technique for the planning of infrastructure in offshore oilfields, J. Pet. Sci. Eng., 51, 1, 97–110, https://doi.org/10.1016/j.petrol.2005.11.012. [CrossRef] [Google Scholar]
- Chen N.H. (1979) An Explicit Equation for Friction Factor in Pipe, Ind. Eng. Chem. Fundam. 18, 3, 296–297, https://doi.org/10.1021/i160071a019. [CrossRef] [Google Scholar]
- Cheng Y., Wang Y., McVay D., Lee W.J. (2010) Practical Application of a probabilistic approach to estimate reserves using production decline data, SPE Econ. Manag., 2, 01, 19–31, https://doi.org/10.2118/95974-PA. [CrossRef] [Google Scholar]
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. (2009) Introduction to Algorithms, The MIT Press. [Google Scholar]
- Defeo J.A., Juran J.M. (2010) Juran's Quality Handbook: The Complete Guide to Performance Excellence, McGraw-Hill Education, New York. [Google Scholar]
- Devine M.D., Lesso W.G. (1972) Models for the Minimum Cost Development of Offshore Oil Fields, Manag. Sci. 18, 8, B-378, https://doi.org/10.1287/mnsc.18.8.B378. [CrossRef] [Google Scholar]
- Dogru S. (1987) Selection of optimal platform locations, SPE Drill. Eng. 2, 04, 382–386, https://doi.org/10.2118/10754-PA. [CrossRef] [Google Scholar]
- Economides M.J., Hill A.D., Ehlig-Economides C. (1994) Petroleum Production Systems, Prentice Hall, New Jersey. [Google Scholar]
- Feo T.A., Resende M.G.C. (1989) A probabilistic heuristic for a computationally difficult set covering problem, Oper. Res. Lett. 8, 2, 67–71, https://doi.org/10.1016/0167-6377(89)90002-3. [CrossRef] [MathSciNet] [Google Scholar]
- Feo T.A., Resende M.G.C. (1995) Greedy Randomized Adaptive Search Procedures, J. Glob. Optim. 6, 2, 109–133, https://doi.org/10.1007/BF01096763. [Google Scholar]
- Frair L., Devine M. (1975) Economic Optimization of Offshore Petroleum Development, Manag. Sci. 21, 12, 1370–1379. [CrossRef] [Google Scholar]
- Ghorbani B., Hamedi M., Shirmohammadi R., Mehrpooya M., Hamedi M.-H. (2016) A novel multi-hybrid model for estimating optimal viscosity correlations of Iranian crude oil, J. Pet. Sci. Eng. 142, 68–76, https://doi.org/10.1016/j.petrol.2016.01.041. [CrossRef] [Google Scholar]
- Ghoseiri K., Ghannadpour S.F. (2007) Solving capacitated p-median problem using genetic algorithm, in 2007 IEEE International Conference on Industrial Engineering and Engineering Management, IEEE, New Jersey, pp. 885–889, https://doi.org/10.1109/IEEM.2007.4419318. [CrossRef] [Google Scholar]
- Gilman J.R., Brickey R.T., Red M.M. (1998) Monte Carlo Techniques for Evaluating Producing Properties, SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium, Soc. Petrol. Eng., https://doi.org/10.2118/39926-MS. [Google Scholar]
- Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Boston, MA, USA. [Google Scholar]
- Grimmett T.T., Startzman R.A. (1988) Optimization of Offshore Field Development to Minimize Investment, SPE Drill. Eng. 3, 04, 403–410, https://doi.org/10.2118/16297-PA. [CrossRef] [Google Scholar]
- Guo B., Lyons W.C., Ghalambor A. (2007) Production Decline Analysis, in Petroleum Production Engineering, Elsevier, Burlington, pp. 97–105, https://doi.org/10.1016/B978-075068270-1/50012-8. [CrossRef] [Google Scholar]
- Hansen P., de Luna Pedrosa Filho E., Carneiro Ribeiro C. (1992) Location and sizing of offshore platforms for oil exploration, Eur. J. Oper. Res. 58, 2, 202–214, https://doi.org/10.1016/0377-2217(92)90207-P. [Google Scholar]
- Holland J.H. (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, Ann Arbor. [Google Scholar]
- Huffman C.H., Thompson R.S. (1994) Probability Ranges for Reserve Estimates From Decline Curve Analysis, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, https://doi.org/10.2118/28333-MS. [Google Scholar]
- Kadri R.L., Boctor F.F. (2018) An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, Eur. J. Oper. Res. 265, 2, 454–462, https://doi.org/10.1016/j.ejor.2017.07.027. [CrossRef] [Google Scholar]
- Kitchel B.G., Moore S.O., Banks W.H., Borland B.M. (1997) Probabilistic Drilling Cost Estimating, SPE Comput. Appl. 9, 04, 121–125, https://doi.org/10.2118/35990-PA. [Google Scholar]
- Martí R., Reinelt G. (2011) Heuristic Methods, in The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 17–40. [Google Scholar]
- Masmoudi M.A., Braekers K., Masmoudi M., Dammak A. (2017) A hybrid Genetic algorithm for the Heterogeneous Dial-A-Ride Problem, Comput. Oper. Res. 81, 1–13, https://doi.org/10.1016/j.cor.2016.12.008. [Google Scholar]
- Metropolis N., Ulam S. (1949) The Monte Carlo Method, J. Am. Stat. Assoc. 44, 247, 335–341, https://doi.org/10.1080/01621459.1949.10483310. [Google Scholar]
- Moody L.F., Princeton N.J. (1944) Friction Factors for Pipe Flow, in Semi-Annual Meeting of the ASME, ASME, New York. [Google Scholar]
- Morooka C.K., Galeano Y.D. (1999) Systematic Design For Offshore Oilfield Development, The Ninth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers. [Google Scholar]
- Murawski C., Bossaerts P. (2016) How humans solve complex problems: The case of the Knapsack problem, Sci. Rep., 6, 1, https://doi.org/10.1038/srep34851. [CrossRef] [Google Scholar]
- Murtha J.A. (1994) Incorporating Historical Data Into Monte Carlo Simulation, SPE Comput. Appl. 6, 02, 11–17, https://doi.org/10.2118/26245-PA. [Google Scholar]
- National Energy Technology Laboratory (1984) NPCPUBDB.GEO, NPC Public Database. [Google Scholar]
- Noetinger B. (2016) About the Determination of Quasi Steady State Storativity and Connectivity Matrix of Wells in 3D Heterogeneous Formations, Math. Geosci. 48, 6, 641–662, https://doi.org/10.1007/s11004-015-9610-1. [CrossRef] [Google Scholar]
- Norwegian Petroleum Directorate (2016) FactPages, Nor. Pet. Dir. [Google Scholar]
- Rahmawati S.D., Whitson C.H., Foss B., Kuntadi A. (2012) Integrated field operation and optimization, J. Pet. Sci. Eng., 81, 161–170, https://doi.org/10.1016/j.petrol.2011.12.027. [Google Scholar]
- Rodrigues H.W.L., Prata B.A., Bonates T.O. (2016) Integrated optimization model for location and sizing of offshore platforms and location of oil wells, J. Pet. Sci. Eng. 145, 734–741, https://doi.org/10.1016/j.petrol.2016.07.002. [CrossRef] [Google Scholar]
- Rosa V.R. (2006) Otimização em localização de plataformas de produção, Master's thesis, Universidade Federal do Rio de Janeiro. [Google Scholar]
- Rosa V.R., Ferreira Filho V.J.M. (2012) Optimizing the Location of Platforms and Manifolds, in 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME, New York, https://doi.org/10.1115/OMAE2012-84211. [Google Scholar]
- Rothfarb B., Frank H., Rosenbaum D.M., Steiglitz K., Kleitman D.J. (1970) Optimal Design of Offshore Natural-Gas Pipeline Systems, Oper. Res. 18, 6, 992–1020. [CrossRef] [Google Scholar]
- Sales D.S. (2010) Uma Heurística para o Problema de Localização Multiobjetivo de Plataforma de Produção de Petróleo Multicapacitada, Doctor's dissertation, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil. [Google Scholar]
- Sales L.P.A., Pitombeira-Neto A.R., Prata B.A. (2017a) A genetic algorithm integrated with Monte Carlo simulation for the field layout design problem − Models, Research Gate, https://doi.org/10.13140/RG.2.2.32451.30242. [Google Scholar]
- Sales L.P.A., Pitombeira-Neto A.R., Prata B.A. (2017b) Field layout design problem instances, ResearchGate, https://doi.org/10.13140/RG.2.2.10640.92167. [Google Scholar]
- Serapião A.B.S., Mendes J.R.P., Morooka C.K. (2012) Decision-Making Tool for Knowledge-Based Projects in Offshore Production Systems, in Advances in Artificial Intelligence − IBERAMIA 2012, Springer, Berlin, Heidelberg, pp. 692–701, https://doi.org/10.1007/978-3-642-34654-5_70. [Google Scholar]
- Shahamat M.S., Hamdi H., Mattar L., Aguilera R. (2016) A Novel Method for Performance Analysis of Compartmentalized Reservoirs, Oil & Gas Science Technology - Rev. IFP Energies nouvelles 71, 38, https://doi.org/10.2516/ogst/2015016. [Google Scholar]
- Sheremetov L., Martínez-Muñoz J., Chi-Chim M. (2018) Two-stage genetic algorithm for parallel machines scheduling problem: Cyclic steam stimulation of high viscosity oil reservoirs, Appl. Soft Comput. 64, 317–330, https://doi.org/10.1016/j.asoc.2017.12.021. [CrossRef] [Google Scholar]
- Souza E.E. (2011) Processo de Localização de Plataformas de Petróleo, Doctor's dissertation, Pontifícia Universidade Católica do Rio De Janeiro, Rio de Janeiro. [Google Scholar]
- Touzani S., Busby D. (2014) Screening Method Using the Derivative-based Global Sensitivity Indices with Application to Reservoir Simulator, Oil & Gas Science Technology - Rev. IFP Energies nouvelles 69, 4, 619–632, https://doi.org/10.2516/ogst/2013195. [Google Scholar]
- Túpac Y.J., Vellasco M.M.B.R., Pacheco M.A.C. (2002) Selection of alternatives for oil field development by genetic algorithms, Rev. Eng. Térmicam 1, 2, https://doi.org/10.5380/ret.v1i2.3512. [Google Scholar]
- Wang Y., Duan M., Feng J., Mao D., Xu M., Estefen S.F. (2014) Modeling for the optimization of layout scenarios of cluster manifolds with pipeline end manifolds, Appl. Ocean Res. 46, 94–103, https://doi.org/10.1016/j.apor.2014.02.006. [CrossRef] [Google Scholar]
- Wang Y., Duan M., Xu M., Wang D., Feng W. (2012) A mathematical model for subsea wells partition in the layout of cluster manifolds, Appl. Ocean Res., 36, 26–35, https://doi.org/10.1016/j.apor.2012.02.002. [CrossRef] [Google Scholar]
- Zhang H., Liang Y., Zhang W., Wang B., Yan X., Liao Q. (2017) A unified MILP model for topological structure of production well gathering pipeline network, J. Pet. Sci. Eng. 152, 284–293, https://doi.org/10.1016/j.petrol.2017.03.016. [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
|
|
---|---|---|
Numéro d'article | 24 | |
Nombre de pages | 16 | |
DOI | https://doi.org/10.2516/ogst/2018017 | |
Publié en ligne | 2 juillet 2018 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.