Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 3, May–June 2017
Numéro d'article 17
Nombre de pages 13
DOI https://doi.org/10.2516/ogst/2017013
Publié en ligne 29 juin 2017
  • Prodanovic M., Ryoo S., Rahmani A.R., Kuranov R.V., Kotsmar C., Milner T.E., Johnston K.P., Bryant S.L., Huh C. (2010) Effects of magnetic field on the motion of multiphase fluids containing paramagnetic nanoparticles in porous media, SPE Improved Oil Recovery Symposium, 24-28 April, Tulsa, Oklahoma, USA, SPE-129850-MS. [Google Scholar]
  • Cai J., Chenevert M.E., Sharma M.M., Friedheim J.E. (2012) Decreasing water invasion into Atoka shale using nonmodified silica nanoparticles, SPE Drill. Completion. 27, 1, 103–112. [CrossRef] [Google Scholar]
  • Zhang T., Davidson D., Bryant S.L., Huh C. (2010) Nanoparticle-stabilized emulsions for applications in enhanced oil recovery, SPE Improved Oil Recovery Symposium, 24-28 April, Tulsa, Oklahoma, USA, SPE-129885-MS. [Google Scholar]
  • Metin C.O., Baran J.R. Jr., Nguyen Q.P. (2012) Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface, J. Nanopart. Res. 14, 11, 1–16. [Google Scholar]
  • Nazari Moghaddam R., Bahramian A., Fakhroueian Z., Karimi A., Arya S. (2015) Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks, Energy Fuels 29, 4, 2111–2119. [CrossRef] [Google Scholar]
  • Kaasa A.T. (2013) Investigation of how silica nanoparticle adsorption affects wettability in water-wet Berea Sandstone, Master Thesis, NTNU, Trondheim, Norway. [Google Scholar]
  • Mousavi M., Hassanajili S., Rahimpour M. (2013) Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs, Appl. Surf. Sci. 273, 205–214. [CrossRef] [Google Scholar]
  • Kewen L., Abbas F. (2000) Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects, SPE Reserv. Eval. Eng. 3, 2, 139–149. [Google Scholar]
  • Jamadagni S.N., Godawat R., Garde S. (2011) Hydrophobicity of proteins and interfaces: Insights from density fluctuations, Annu. Rev. Chem. Biomol. Eng. 2, 147–171. [CrossRef] [PubMed] [Google Scholar]
  • Accordino S.R., de Oca J.M.M., Fris J.A.R., Appignanesi G.A. (2015) Hydrophilic behavior of graphene and graphene-based materials, J. Chem. Phys. 143, 15, 154704. [CrossRef] [PubMed] [Google Scholar]
  • Stukan M.R., Ligneul P., Boek E.S. (2012) Molecular dynamics simulation of spontaneous imbibition in nanopores and recovery of asphaltenic crude oils using surfactants for EOR applications, Oil Gas Sci. Technol. – Rev. IFP 67, 5, 737–742. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bang V. (2007) Development of a successful chemical treatment for gas wells with condensate or water blocking damage, ProQuest, Michigan, USA. [Google Scholar]
  • Koparde V.N., Cummings P.T. (2007) Molecular dynamics study of water adsorption on TiO2 nanoparticles, J. Phys. Chem. C 111, 19, 6920–6926. [CrossRef] [Google Scholar]
  • Fan H., Resasco D.E., Striolo A. (2011) Amphiphilic silica nanoparticles at the decane-water interface: insights from atomistic simulations, Langmuir 27, 9, 5264–5274. [CrossRef] [PubMed] [Google Scholar]
  • Rudyak V.Y., Krasnolutskii S.L., Ivanov D.A. (2011) Molecular dynamics simulation of nanoparticle diffusion in dense fluids, Microfluidics Nanofluidics 11, 4, 501–506. [CrossRef] [Google Scholar]
  • Gao W., Jiao Y., Dai L.L. (2016) The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water-oil interfaces via molecular dynamics simulations, J. Nanopart. Res. 18, 4, 1–11. [CrossRef] [Google Scholar]
  • Li Z. (2009) Critical particle size where the Stokes-Einstein relation breaks down, Phys. Rev. E 80, 6, 061204. [CrossRef] [Google Scholar]
  • Grabowski C.A., Mukhopadhyay A. (2014) Size effect of nanoparticle diffusion in a polymer melt, Macromolecules 47, 20, 7238–7242. [CrossRef] [Google Scholar]
  • Eslami H., Rahimi M., Müller-Plathe F. (2013) Molecular dynamics simulation of a silica nanoparticle in oligomeric poly (methyl methacrylate): A model system for studying the interphase thickness in a polymer-nanocomposite via different properties, Macromolecules 46, 21, 8680–8692. [CrossRef] [Google Scholar]
  • Litton D.A., Garofalini S.H. (2001) Modeling of hydrophilic wafer bonding by molecular dynamics simulations, J. Appl. Phys. 89, 11, 6013–6023. [CrossRef] [Google Scholar]
  • Makimura D., Metin C., Kabashima T., Matsuoka T., Nguyen Q., Miranda C.R. (2010) Combined modeling and experimental studies of hydroxylated silica nanoparticles, J. Mater. Sci. 45, 18, 5084–5088. [CrossRef] [Google Scholar]
  • Sepehrinia K., Mohammadi A. (2016) Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation, Appl. Surf. Sci. 371, 349–359. [CrossRef] [Google Scholar]
  • Youngs T. (2010) Aten – An application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules, J. Comput. Chem. 31, 3, 639–648. [PubMed] [Google Scholar]
  • Smith W., Forester T. (1996) DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, J. Mol. Graph. Model. 14, 3, 136–141. [CrossRef] [PubMed] [Google Scholar]
  • Lopes P.E., Murashov V., Tazi M., Demchuk E., MacKerell A.D. (2006) Development of an empirical force field for silica. Application to the quartz-water interface, J. Phys. Chem. B 110, 6, 2782–2792. [CrossRef] [PubMed] [Google Scholar]
  • Notman R., Walsh T.R. (2009) Molecular dynamics studies of the interactions of water and amino acid analogues with quartz surfaces, Langmuir 25, 3, 1638–1644. [CrossRef] [PubMed] [Google Scholar]
  • Chilukoti H.K., Kikugawa G., Ohara T. (2014) Structure and transport properties of liquid alkanes in the vicinity of α-quartz surfaces, Int. J. Heat Mass Transfer 79, 846–857. [CrossRef] [Google Scholar]
  • Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, 2, 926–935. [NASA ADS] [CrossRef] [Google Scholar]
  • Vanommeslaeghe K., MacKerell A.D. Jr. (2012) Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing, J. Chem. Inf. Model. 52, 12, 3144–3154. [CrossRef] [PubMed] [Google Scholar]
  • Vanommeslaeghe K., Raman E.P., MacKerell A.D. Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges, J. Chem. Inf. Model. 52, 12, 3155–3168. [CrossRef] [PubMed] [Google Scholar]
  • Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I. (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem. 31, 4, 671–690. [PubMed] [Google Scholar]
  • Leroch S., Wendland M. (2013) Influence of capillary bridge formation onto the silica nanoparticle interaction studied by grand canonical Monte Carlo simulations, Langmuir 29, 40, 12410–12420. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Kalinichev A.G., Kirkpatrick R.J. (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study, Geochim. Cosmochim. Acta 70, 3, 562–582. [CrossRef] [Google Scholar]
  • Li Y., Jiang G., Li L., Xu W., Yu Y., Zhang X., Xie S. (2014) The effect of a novel gas-wetting reversal FC-1 on the condensate gas reservoir core, Pet. Sci. Technol. 32, 1, 1–7. [CrossRef] [Google Scholar]
  • Sharifzadeh S., Hassanajili S., Rahimpour M. (2013) Wettability alteration of gas condensate reservoir rocks to gas wetness by sol-gel process using fluoroalkylsilane, J. Appl. Polym. Sci. 128, 6, 4077–4085. [Google Scholar]
  • Acharya H., Vembanur S., Jamadagni S.N., Garde S. (2010) Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins, Faraday Discuss. 146, 353–365. [CrossRef] [PubMed] [Google Scholar]
  • Impey R., Madden P., McDonald I. (1983) Hydration and mobility of ions in solution, J. Phys. Chem. 87, 25, 5071–5083. [CrossRef] [Google Scholar]
  • Cheung D.L. (2010) Molecular simulation of nanoparticle diffusion at fluid interfaces, Chem. Phys. Lett. 495, 1, 55–59. [CrossRef] [Google Scholar]
  • Rudyak V.Y., Belkin A., Ivanov D.A., Egorov V.V. (2008) The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient, High Temp. 46, 1, 30–39. [CrossRef] [Google Scholar]
  • Allen M.P., Tildesley D.J. (1987) Computer simulation of liquids, Oxford University Press, Oxford, United Kingdom. [Google Scholar]
  • González M.A., Abascal J.L. (2010) The shear viscosity of rigid water models, J. Chem. Phys. 132, 9, 096101. [CrossRef] [PubMed] [Google Scholar]
  • Zhu R., Molinari M., Shapley T.V., Parker S.C. (2013) Modeling the interaction of nanoparticles with mineral surfaces: Adsorbed C60 on pyrophyllite, J. Phys. Chem. A 117, 30, 6602–6611. [CrossRef] [PubMed] [Google Scholar]
  • Kerisit S., Cooke D.J., Spagnoli D., Parker S.C. (2005) Molecular dynamics simulations of the interactions between water and inorganic solids, J. Mater. Chem. 15, 14, 1454–1462. [CrossRef] [Google Scholar]
  • Kerisit S., Parker S.C. (2004) Free energy of adsorption of water and metal ions on the 1014 calcite surface, J. Am. Chem. Soc. 126, 32, 10152–10161. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.