Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 5, September–October 2016
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Numéro d'article 59
Nombre de pages 11
DOI https://doi.org/10.2516/ogst/2016009
Publié en ligne 2 septembre 2016
  • Lake L.W. (1989) Enhanced Oil Recovery. Prentice Hall Inc., Old Tappan, NJ. [Google Scholar]
  • Eriksson K., Johnson C. (1995) Adaptive finite element methods for parabolic problems, IV. Nonlinear problems, SIAM J. Numer. Anal. 32, 6, 1729–1749. [Google Scholar]
  • Verfürth R. (1998) A posteriori error estimates for nonlinear problems: Lr(0, T;W1,ρ(Ω))-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14, 4, 487–518. [CrossRef] [MathSciNet] [Google Scholar]
  • Verfürth R. (1998) A posteriori error estimates for nonlinear problems. Lr(0, T; Lρ(Ω))-error estimates for finite element discretizations of parabolic equations, Math. Comp. 67, 224, 1335–1360. [CrossRef] [MathSciNet] [Google Scholar]
  • Nochetto R.H., Schmidt A., Verdi C. (2000) A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp. 69, 229, 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  • Ohlberger M. (2001) A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection–diffusion equations, Numer. Math. 87, 4, 737–761. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A., Vohralík M., Yousef S. (2015) Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase stefan problem, Math. Comput. 84, 291. [Google Scholar]
  • Cancès C., Pop I.S., Vohralík M. (2013) An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp. doi: 10.1090/S0025-5718-2013-02723-8. [Google Scholar]
  • Vohralík M., Wheeler M.F. (2013) A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, Computational Geosciences 17, 5, 789–812. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A., Flauraud E., Vohralík M., Yousef S. (2014) A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys. 276, 163–187. [CrossRef] [Google Scholar]
  • Di Pietro D.A., Vohralík M., Yousef S. (2014) An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media, Computers & Mathematics with Applications 68, 12, Part B, 2331–2347. [CrossRef] [MathSciNet] [Google Scholar]
  • Eymard R., Gallouët T., Herbin R. (2000) The finite volume method, Vol. 7, Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions (eds), North Holland. [Google Scholar]
  • Brezzi F., Fortin M. (1991) Mixed and hybrid finite element methods, Vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, ISBN 0-387-97582-9. [CrossRef] [Google Scholar]
  • Mesri Y., Gratien J.-M., Ricois O.M., Gayno R., et al. (2013) Parallel adaptive mesh refinement for capturing front displacements: Application to thermal eor processes, in SPE Reservoir Characterization and Simulation Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/166058-MS. [Google Scholar]
  • Grospellier G., Lelandais B. (2009) The arcane development framework, in Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ’09, pp. 4:1–4:11, New York, NY, USA. [Google Scholar]
  • Mesri Y., Ricois O. (2015) Construction process for an improved meshing for the simulation of a reservoir in an underground formation, URL http://brevets-patents.ic.gc.ca/opic-cipo/cpd/fra/brevet/2886110/ [Google Scholar]
  • Christie M.A., Blunt M.J. (2001) Tenth SPE Comparative Solution Project:A Comparison of Upscaling Techniques. Reservoir Simulation Symposium. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.