Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Numéro d'article 41
Nombre de pages 18
Publié en ligne 6 juin 2016
  • Ginestra J.C., Jackson R. (1985) Pinning of a bed of particles in a vertical channel by a cross flow of gas, Industrial & Engineering Chemistry Fundamentals 24, 2, 121–128. [Google Scholar]
  • Pilcher K.A., Bridgwater J. (1990) Pinning in a rectangular moving bed reactor with gas cross-flow, Chemical Engineering Science 45, 8, 2535–2542. [CrossRef] [Google Scholar]
  • Pradel F., Lanaud C., Meimon Y. (2001) Interaction between granular and gas flows: the pinning effect, Powders and Grains 585–588. [Google Scholar]
  • Chen Y.H., Zhu X.D., Wul Y.Q., Zhu Z.B. (2007) Investigation of the effect of a dividing wall in a moving bed, Chemical Engineering & Technology 30, 8, 1028–1035. [CrossRef] [Google Scholar]
  • Sanchez E., Fershneider G., Bazer-Bachi F. (2011) Device for distributing feed and recovering effluents in a radial bed catalytic reactor, US 2011/0049013. [Google Scholar]
  • Snider D.M. (2001) An incompressible three-dimensional multiphase particle in cell model for dense particle flow, Journal of Computational Physics 170, 523–549. [CrossRef] [Google Scholar]
  • Snider D.M. (2007) Three fundamental granular flow experiments and CPFD predictions, Powder Tech. 176, 36–46. [CrossRef] [Google Scholar]
  • Lanaud C. (1996) Rhéologie des lits de catalyseurs, Application aux lits mobiles, Thesis, Université Lille 1. [Google Scholar]
  • Rahmoun J. (2007) Calcul des contraintes dans un matériau granulaire ensilé : comparaison entre les approches discrètes et continues, in 18e Congrès français de mécanique, Grenoble, France, 27-31 août. [Google Scholar]
  • Bertho Y. (2003) Dynamiques d’écoulements gaz-particules en conduite verticale, Thesis, École Polytechnique. [Google Scholar]
  • Pradel F., Meimon Y. (2001) New Concept of Scallop Screens for Reactors of Refining, Oil & Gas Science and Technology 56, 6, 597–610. [CrossRef] [EDP Sciences] [Google Scholar]
  • Paschero M., Hyer M.W. (2009) Axial buckling of an orthotropic circular cylinder: Application to orthogrid concept, International Journal of Solids and Structures 46, 2151–2171. [CrossRef] [Google Scholar]
  • Sanchez E., Fershneider G., Bazer-Bachi F. (2009) Dispositif de rigidification des unités de conversion catalytique à lit radial, FR 2 948 580. [Google Scholar]
  • Vasiliev V.V. (1993) Mechanics of composites structures, Taylor and Francis. [Google Scholar]
  • Antos G.J., Aitani A.M. (2004) Preparation of Reforming catalysts, in Catalytic Naphtha Reforming, Antos, G.J., Aitani, A.M. (eds), Marcel Dekker, New York. [CrossRef] [Google Scholar]
  • Berry F.J., Jobson S., Zhang T., Marco J.F. (1991) In situ Characterization of Heterogeneous Catalysts by Mossbauer-Spectroscopy, Catalysis Today 9, 1-2, 137–143. [CrossRef] [Google Scholar]
  • Jahel A., Avenier P., Lacombe S., Olivier-Fourcade J., Jumas J.-C. (2010) Effect of indium in trimetallic Pt/Al2O3SnIn-Cl naphtha-reforming catalysts, Journal of Catalysis 272, 2, 275–286. [CrossRef] [Google Scholar]
  • Womes M., Le Peltier F., Morin S., Didillon B., Olivier-Fourcade J., Jumas J.-C. (2007) Study of the reaction mechanisms between Sn-(n-C4H9)4 and alumina surface sites: Application to the controlled preparation of PtSn/Al2O3 catalysts, Journal of Molecular Catalysis A: Chemical 266, 1-2, 55–64. [CrossRef] [Google Scholar]
  • Jahel A., Avenier P., Lacombe S., Olivier-Fourcade J., Jumas J.-C. (2010) Investigation by Mossbauer spectroscopy of Sn redox transformations during H2/O2 titration on Pt/Al2O3Sn-Cl and Pt/Al2O3SnIn-Cl naphtha reforming catalysts, Journal of Physics: Conference Series 217, 012045–012048. [CrossRef] [Google Scholar]
  • Jahel A., Lacombe S., Avenier P., Olivier-Fourcade J., Jumas J.-C. (2012) Mössbauer spectroscopy: an elegant tool for the active sites identification and quantification in Pt-Sn-In based naphtha reforming catalysts, Hyperfine Interaction 207, 1-3, 37–40. [CrossRef] [Google Scholar]
  • Olivier-Fourcade J., Womes M., Jumas J.-C., Le Peltier F., Morin S., Didillon B. (2004) Investigation of redox properties of different PtSn/Al2O3 catalysts, ChemPhysChem 5, 11, 1734–1744. [CrossRef] [PubMed] [Google Scholar]
  • Singh J., Nelson R.C., Vicente B.C., Scott S.L., van Bokhoven J.A. (2010) Electronic structure of alumina-supported monometallic Pt and bimetallic PtSn catalysts under hydrogen and carbon monoxide environment, Physical Chemistry Chemical Physics 12, 21, 5668–5677. [CrossRef] [Google Scholar]
  • Jahel A.N., Moizan-Basle V., Chizallet C., Raybaud P., Olivier-Fourcade J., Jumas J.-C., Avenier P., Lacombe S. (2012) Effect of Indium Doping of gamma-Alumina on the Stabilization of PtSn Alloyed Clusters Prepared by Surface Organostannic Chemistry, Journal of Physical Chemistry C 116, 18, 10073–10083. [CrossRef] [Google Scholar]
  • Hu C.H., Chizallet C., Mager-Maury C., Corral-Valero M., Sautet P., Toulhoat H., Raybaud P. (2010) Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13/gamma-Al2O3, Journal of Catalysis 274, 1, 99–110. [CrossRef] [Google Scholar]
  • Mager-Maury C., Chizallet C., Sautet P., Raybaud P. (2012) Platinum Nanoclusters Stabilized on gamma-Alumina by Chlorine Used As a Capping Surface Ligand: A Density Functional Theory Study, ACS Catalysis 2, 7, 1346–1357. [CrossRef] [Google Scholar]
  • Digne M., Sautet P., Raybaud P., Euzen P., Toulhoat H. (2002) Hydroxyl groups on gamma-alumina surfaces: A DFT study, Journal of Catalysis 211, 1, 1–5. [Google Scholar]
  • Digne M., Sautet P., Raybaud P., Euzen P., Toulhoat H. (2004) Use of DFT to achieve a rational understanding of acid-basic properties of gamma-alumina surfaces, Journal of Catalysis 226, 1, 54–68. [Google Scholar]
  • Digne M., Raybaud P., Sautet P., Guillaume D., Toulhoat H. (2008) Atomic scale insights on chlorinated gamma-alumina surfaces, Journal of the American Chemical Society 130, 33, 11030–11039. [CrossRef] [PubMed] [Google Scholar]
  • Krokidis X., Raybaud P., Gobichon A.E., Rebours B., Euzen P., Toulhoat H. (2001) Theoretical study of the dehydration process of boehmite to gamma-alumina, Journal of Physical Chemistry B 105, 22, 5121–5130. [Google Scholar]
  • Hu C.H., Chizallet C., Toulhoat H., Raybaud P. (2009) Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems, Physical Review B 79, 195416. [CrossRef] [Google Scholar]
  • Berdala J., Freund E., Lynch J.P. (1986) Environment of Platinum Atoms in a H2 PtCl6/Al2O3 Catalyst - Influence of Metal Loading and Chlorine Content, Journal de Physique 47, C-8, 269–272. [Google Scholar]
  • Lynch J. (2002) Development of structural characterisation tools for catalysts, Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles 57, 3, 281–305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mager-Maury C., Bonnard G., Chizallet C., Sautet P., Raybaud P. (2011) H2-Induced Reconstruction of Supported Pt Clusters: Metal-Support Interaction versus Surface Hydride, ChemCatChem 3, 1, 200–207. [CrossRef] [Google Scholar]
  • Ji Y.Y., van der Eerden A.M.J., Koot V., Kooyman P.J., Meeldijk J.D., Weckhuysen B.M., Koningsberger D.C. (2005) Influence of support ionicity on the hydrogen chemisorption of Pt particles dispersed in Y zeolite: consequences for Pt particle size determination using the H/M method, Journal of Catalysis 234, 2, 376–384. [CrossRef] [Google Scholar]
  • Kip B.J., Duivenvoorden F.B.M., Koningsberger D.C., Prins R. (1987) Determination of Metal-Particle Size of Highly Dispersed Rh, Ir, and Pt Catalysts by Hydrogen Chemisorption and EXAFS, Journal of Catalysis 105, 1, 26–38. [CrossRef] [Google Scholar]
  • Bus E., Miller J.T., Kropf A.J., Prins R., van Bokhoven J.A. (2006) Analysis of in situ EXAFS data of supported metal catalysts using the third and fourth cumulant, Physical Chemistry Chemical Physics 8, 27, 3248–3258. [CrossRef] [Google Scholar]
  • Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriguez-Ramos I. (1997) Hydrogen adsorbed species at the metal/support interface on a Pt/Al2O3catalyst, Journal of the Chemical Society, Faraday Transactions 93, 19, 3563–3567. [CrossRef] [Google Scholar]
  • Miller J.T., Meyers B.L., Modica F.S., Lane G.S., Vaarkamp M., Koningsberger D.C. (1993) Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts, Journal of Catalysis 143, 2, 395–408. [CrossRef] [Google Scholar]
  • Raybaud P., Chizallet C., Toulhoat H., Sautet P. (2012) Comment on “Electronic properties and charge transfer phenomena in Pt nanoparticles on gamma-Al2O3: size, shape, support, and adsorbate effects” by F. Behafarid et al., Phys. Chem. Chem. Phys., 2012, 14, 11766-11779, Physical Chemistry Chemical Physics 14, 48, 16773–16774. [Google Scholar]
  • Sanchez S.I., Menard L.D., Bram A., Kang J.H., Small M.W., Nuzzo R.G., Frenkel A.I. (2009) The Emergence of Nonbulk Properties in Supported Metal Clusters: Negative Thermal Expansion and Atomic Disorder in Pt Nanoclusters Supported on Gamma-Al2O3, Journal of the American Chemical Society 131, 20, 7040–7054. [CrossRef] [PubMed] [Google Scholar]
  • Gorczyca A., Moizan V., Chizallet C., Proux O., Del Net W., Lahera E., Hazemann J.L., Raybaud P., Joly Y. (2014) Monitoring Morphology and Hydrogen Coverage of Nanometric Pt/γ-Al2O3 Particles by In Situ HERFD–XANES and Quantum Simulations, Angewandte Chemie, International Edition 46, 53, 12426–12429. [Google Scholar]
  • Raybaud P., Chizallet C., Mager-Maury C., Digne M., Toulhoat H., Sautet P. (2013) From gamma-alumina to supported platinum nanoclusters in reforming conditions: 10 years of DFT modeling and beyond, Journal of Catalysis 308, 1, 328–340. [CrossRef] [Google Scholar]
  • Abolhamd G. (1980) Étude de l’influence de la modification de la fonction métallique sur l’activité deshydrocyclisante d’un catalyseur de reformage platine sur alumine, Thesis, Université Paris VI. [Google Scholar]
  • Bond G.C., Cunningham R.H. (1997) Alkane transformations on supported platinum catalysts. 4. Kinetics of hydrogenolysis of ethane, propane, and n-butane on Pt/Al2O3 (EUROPT-3) and PtRe/Al2O3 (EUROPT-4), Journal of Catalysis 166, 2, 172–185. [CrossRef] [Google Scholar]
  • Bond G.C. (1999) Kinetics of alkane reactions on metal catalysts: activation energies and the compensation effect, Catalysis Today 49, 1-3, 41–48. [CrossRef] [Google Scholar]
  • Franck J.P. (1984) Fundamental and industrial aspects of catalysis by metals, Imelik B., Martin G.A., Renouprez A.J. (eds), Édition du CNRS, Paris. [Google Scholar]
  • Le-Goff P.-Y., Lopez J., Ross J. (2012) Redefining reforming catalyst performance: High selectivity and stability, Hydrocarbon processing 47–52 [Google Scholar]
  • Beltramini J.N., Martinelli E.E., Churin E.J., Figoli N.S., Parera J.M. (1983) Pt/Al2O3-Cl in pure hydrocarbon reforming, Applied catalysis 7, 43–55. [CrossRef] [Google Scholar]
  • Alhumaidan F., Cresswell D., Garforth A. (2010) Long-Term Deactivation of Supported Pt catalysts in the Dehydrogenation of Methylcyclohexane to Toluene, Industrial & Engineering Chemistry Research 49, 9764–9770. [CrossRef] [Google Scholar]
  • Mazzieri V.A., Grau J.M., Vera C.R., Yori J.C., Parera J.M., Pieck C.L. (2005) Pt-Re-Sn/Al2O3 trimetallic catalysts for naphtha reforming processes without presulfiding step, Applied Catalysis A: General 296, 216–221. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.