Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 291 - 303
DOI https://doi.org/10.2516/ogst/2015001
Publié en ligne 17 mars 2015
  • Guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in oil & gas production (1995) London, UK, EFC Pub. 16, The Institute of Materials. [Google Scholar]
  • Kermani M.B. (1991) Proc. Conf. Corrosion ‘91, Cincinnati, OH, USA, NACE, Paper 21. [Google Scholar]
  • Kane R.D., Horvath R.J., Cayard M.S. (1996) Wet H2S cracking of carbon steels and weldments, NACE International, Houston, TX, USA. [Google Scholar]
  • NACE Technical Report 1F192 (1993 Revision), Use of Corrosion Resistant Alloys in Oilfield Environments, NACE, Houston, TX, USA, 1993. [Google Scholar]
  • Kermani M.B. (2000) Material Optimisation for Oil and Gas Sour Production, Corrosion conference, Paper No 156. [Google Scholar]
  • Craig B.D. (1993) Sour Gas Design Considerations, SPE Monograph No. 15. [Google Scholar]
  • Crolet J.L., Maisonneuve G. (2000) Construction of a Universal Scale of Severity for Hydrogen Cracking, NACE Annual Conference, Corrosion 2000, 26-31 March, Orlando, Florida, NACE-00127. [Google Scholar]
  • Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment, NACE MR0175-2002/ISO 15156. [Google Scholar]
  • Kermani M.B., Martin J.W., Esaklul K.A. (2006) Materials Design Strategy: Effects of H2S/CO2 corrosion on materials selection, NACE International, Corrosion conference, Corrosion 2006, 12-16 March, San Diego, California, NACE-06121. [Google Scholar]
  • Plennevaux C., Kittel J., Frégonèse M., Normand B., Ropital F., Grosjean F., Cassagne T. (2013) Contribution of CO2 on hydrogen evolution and hydrogen permeation in low alloy steels exposed to H2S environment, Electrochem. Comm. 26, 17–20. [CrossRef] [Google Scholar]
  • Klopffer M.H., Flaconnèche B. (2001) Transport properties of gases in polymers: Bibliographic review, Oil & Gas Science and Technology 56, 3, 223–244. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Flaconnèche B., Martin J., Klopffer M.H. (2001) Transport properties of gases in polymers: Experimental methods, Oil & Gas Science and Technology 56, 3, 245–259. [Google Scholar]
  • Aubry J.C., Saas J.N., Taravel-Condat C., Benjelloun-Dabaghi Z., De Hemptinne J.C. (2002) Moldi (Tm): A fluid permeation model to calculate the annulus composition in flexible pipes, Oil & Gas Science and Technology 57, 2, 177–192. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Crank J. (1979) The Mathematics of Diffusion, Oxford University Press. [Google Scholar]
  • Peng D., Robinson D.B. (1976) New 2-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals 15, 1, 59–64. [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science 27, 6, 1197–1203. [Google Scholar]
  • Redlich O., Kwong J.N.S. (1949) On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions, Chemical Reviews 44, 1, 233–244. [Google Scholar]
  • Nath S.K., de Pablo J.J. (1999) Solubility of small molecules and their mixtures in polyethylene, Journal of Physical Chemistry B 103, 18, 3539–3544. [Google Scholar]
  • Nath S.K., Banaszak B.J., de Pablo J.J. (2001) Simulation of ternary mixtures of ethylene, 1-hexene, and polyethylene, Macromolecules 34, 22, 7841–7848. [CrossRef] [Google Scholar]
  • Raharjo R.D., Freeman B.D., Paul D.R., Sarti G.C., Sanders E.S. (2007) Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly (dimethylsiloxane), Journal of Membrane Science 306, 1-2, 75–92. [CrossRef] [Google Scholar]
  • Raharjo R.D., Freeman B.D., Sanders E.S. (2007) Pure and mixed gas CH4 and n-C4H10 sorption and dilation in poly(dimethylsiloxane), Journal of Membrane Science 292, 1-2, 45–61. [CrossRef] [Google Scholar]
  • Memari P., Lachet V., Klopffer M.H., Flaconneche B., Rousseau B. (2012) Gas mixture solubilities in polyethylene below its melting temperature: Experimental and molecular simulation studies, Journal of Membrane Science 390, 194–200. [Google Scholar]
  • Marcilly C. (2005) Acido-Basic Catalysis, Editions Technip. [Google Scholar]
  • Yagi S., Kunii D. (1955) Studies on combustion of carbon particles in flames and fluidized beds, in Proceedings of the 5th Symposium (International) on Combustion, Hottel H.C. (ed),Reinhold, New York, USA, pp. 231–244. [Google Scholar]
  • Yagi S., Kunii D. (1961) Fluidized-Solids Reactors with Continuous Solids Feed. I: Residence Time of Particles in Fluidized Beds, Chemical Engineering Science 16, 3-4, 364–391. [CrossRef] [Google Scholar]
  • Levenspiel O. (1999) Chemical Reaction Engineering, 3rd edn., John Wiley & Sons, Inc., New York, USA, pp. 566–588. [Google Scholar]
  • Houzelot J.-L. (2000) Réacteurs chimiques polyphasés : couplage réaction/diffusion, Techniques de l’Ingénieur, Traité Génie des Procédés, 5J4012, J4012.1-J4013.2. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.