Dossier: Post Combustion CO2 Capture
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 947 - 968
Publié en ligne 18 avril 2014
  • Arjmandi M., Chapoy A., Tohidi B. (2007) Equilibrium Data of Hydrogen, Methane, Nitrogen, Carbon Dioxide, and Natural Gas in Semi-Clathrate Hydrates of Tetrabutyl Ammonium Bromide, J. Chem. Eng. Data 52, 2153–2158. [CrossRef] [Google Scholar]
  • Belandria V., Mohammadi A.H., Richon D. (2009) Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations, J. Chem. Thermodyn. 41, 12, 1382–1386. [CrossRef] [Google Scholar]
  • Bollas G.M., Chen C.C., Barton P.I. (2008) Refined electrolyte-NRTL model: Activity coefficient expressions for application to multi-electrolyte systems, AIChE J. 54, 6, 1608–1624. [CrossRef] [Google Scholar]
  • Brinchi L., Castellani B., Cotana F., Filipponi M., Rossi F. (2011) Investigation of a novel reactor for gas hydrate production, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 17-21 July. [Google Scholar]
  • Chen C.-C., Britt H.I., Boston J.F., Evans L.B. (1982) Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems, AIChE J. 28, 4, 588–596. [CrossRef] [Google Scholar]
  • Chen C.-C., Evans L.B. (1986) A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32, 3, 444–454. [CrossRef] [Google Scholar]
  • Compingt A., Blanc P., Quidort A. (2009) Slurry for Refrigeration Industrial Kitchen Application, Proceedings of 8th IIR Conference on Phase Change Material and Slurries for Refrigeration and Air Conditioning 2009, Karlsruhe, 3-5 June. [Google Scholar]
  • Danesh A. (1998) PVT and Phase Behaviour of Petroleum Reservoir Fluids, Elsevier. [Google Scholar]
  • Darbouret M. (2005) Étude rhéologique d’une suspension d’hydrates en tant que fluide frigoporteur diphasique. Résultats expérimentaux et modélisation, PhD Thesis, École Nationale Supérieure des Mines de Saint-Étienne, France. [Google Scholar]
  • Darbouret M., Cournil M., Herri J.M. (2005) Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants, Int. J. Refrig. 28, 5, 663–671. [CrossRef] [Google Scholar]
  • Davidson D.W. (1973) Clathrate Hydrates, in Water, a comprehensive treatise; Vol. 2; Water in crystalline hydrates; aqueous solutions of simple nonelectrolytes Franks F. (ed.), Plenum Press, New York, pp. 140–146. [Google Scholar]
  • Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet J.-P., Dalmazzone D., Fürst W. (2006) Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration, Industrial Engineering Chemistry Research 45, 1, 391–397. [CrossRef] [Google Scholar]
  • Deppe G., Tam S.S., Currier R.P., Young J.S., Anderson G.K., Le L.A., Spencer D.F. (2002) A high pressure carbon dioxide separation process in an IGCC Plant, Proceedings of the Future Energy System and Technology for CO2 abatement, Antwerpen, Belgique, 18-19 Nov. [Google Scholar]
  • Deschamps J., Dalmazzone D. (2009) Dissociation enthalpies and phase equilibrium for TBAB semi-clathrates of N2, CO2, N2 + CO2 and CH4 + CO2, J. Therm. Anal. Calorim. 98, 1, 113–118. [CrossRef] [Google Scholar]
  • Douzet J. (2011) Conception, construction, expérimentation et modélisation d’un banc d’essai grandeur nature de climatisation utilisant un fluide frigoporteur diphasique à base d’hydrates de TBAB, PhD Thesis, École Nationale Supérieure des Mines de Saint-Étienne, France. [Google Scholar]
  • Douzet J., Brantuas P., Herri J.-M. (2011) Cristallisation and flowing of high concentrated slurries of quaternary ammonium semi-clathrates. Application to air conditioning and CO2 capture, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 17-21 July. [Google Scholar]
  • Douzet J., Kwaterski M., Lallemand A., Chauvy F., Flick D., Herri J.M. (2013) Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant - Experimental investigations and modelling, International Journal of Refrigeration 36, 6, 1616–1631. [CrossRef] [Google Scholar]
  • Du J., Liang D., Li D. (2010) Experimental Determination of the Equilibrium Conditions of Binary Gas Hydrates of Cyclopentane plus Oxygen, Cyclopentane plus Nitrogen, and Cyclopentane plus Hydrogen, Industrial Engineering Chemistry Research 49, 22, 11797–11800. [CrossRef] [Google Scholar]
  • Duc N.G., Chauvy F., Herri J.-M. (2007) CO2 Capture by Hydrate Crystallization - A Potential Solution for Gas Emission of Steelmaking Industry, Energy Conversion and Management 48, 1313–1322. [CrossRef] [Google Scholar]
  • Dyadin Yu.A, Udachin K.A. (1984) Clathrate formation in water-peralkylonium systems, Journal of Inclusion Phenomena 2, 61–72. [CrossRef] [Google Scholar]
  • Dyadin Yu.A, Udachin K.A. (1987) Clathrate polyhydrates of peralkylonium salts and their analogs, Translated from Zhurnal Strukturnoi Khimii 28, 3, 75–116, May-June. J. Structural Chemistry 28, 3, 394-432. [Google Scholar]
  • Dyadin Yu.A, Bondaryuk I.V., Aladko L.S. (1995) Stoichiometry of clathrates, Journal of Structural Chemistry 36, 6, 995–1045. [CrossRef] [Google Scholar]
  • Fan S.S., Liang D.Q., Guo K.H. (2001) Hydrate Equilibrium Conditions for Cyclopentane and a Quaternary Cyclopentane-Rich Mixture, J. Chem. Eng. Data 46, 4, 930–932. [CrossRef] [Google Scholar]
  • Galindo A., Gil-Villegas A., Jackson G., Burgess A.N. (1999) SAFT-VRE: Phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range, J. Phys. Chem. B 103, 46, 10272–10281. [CrossRef] [Google Scholar]
  • Gayet P., Dicharry C., Marion G., Graciaa A., Lachaise J., Nesterov A. (2005) Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promotor, Chemical Engineering Science 60, 21, 5751–5758. [CrossRef] [Google Scholar]
  • Gibert V. (2006) Ice Slurry, Axima Refrigeration Experience, 7th Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning, Dinan, France, 13-15 Sept. [Google Scholar]
  • Herri J.-M., Bouchemoua A., Kwaterski M., Fezoua A., Ouabbas Y., Cameirao A. (2011) Gas Hydrate Equilibria from CO2-N2 and CO2-CH4 gas mixtures – Experimental studies and Thermodynamic Modelling, Fluid Phase Equilibria 301, 2, 171–190. [CrossRef] [Google Scholar]
  • Herri J.M., Kwaterski M. (2012) Derivation of a Langmuir type of model to describe the intrinsic growth rate of gas hydrates during crystallization from gas mixtures, Chemical Engineering Science 81, 28–37. [CrossRef] [Google Scholar]
  • Holder G.D., Zetts S.P., Pradhan N. (1988) Phase Behavior in Systems Containing Clathrate Hydrates: A Review, Reviews Chemical Engineering 5, 1-4, 1–70. [CrossRef] [Google Scholar]
  • Herslund P.J., Thomsen K., Abildskov J., von Solms N., Galfré A., Brâ ntuas P., Kwaterski M., Herri J.M., Thermodynamic promotion of carbon dioxide–clathrate hydrateformation by tetrahydrofuran, cyclopentane and their mixtures, International Journal of Greenhouse Gas Control 17, 397–410. [Google Scholar]
  • Jeffrey G.A. (1984)Hydrate inclusion compounds, in inclusion compounds, Atwood J.L., Davies J.E.D., MacNicol D.D. (eds), I, 135–190, Academic Press, New York. [Google Scholar]
  • Kamata Y., Oyama H., Shimada W., Ebinuma T., Takeya S., Uchida T., Nagao J., Narita H. (2004) Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate, Jpn J Appl. Phys. 43, 362–365. [CrossRef] [Google Scholar]
  • Kang S.-P., Lee H. (2000) Recovery of CO2 from Flue Gas Using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements, Environ. Sci. Technol. 34, 4397–4400. [CrossRef] [Google Scholar]
  • Kang S.-P., Lee H., Lee C.-S., Sung W.-M. (2001) Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran, Fluid Phase Equilibria 185, 1-2, 101–109. [CrossRef] [Google Scholar]
  • Kwaterski M., Herri J.M. (2011) Thermodynamic modelling of gas semi-clathrate hydrates using the electrolyte NRTL model, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 17-21 July. [Google Scholar]
  • Li S., Fan S., Wang J., Lang X., Liang D. (2009) CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide, Journal of Natural Gas Chemistry 18, 1, 15–20. [CrossRef] [Google Scholar]
  • Li S., Fan S., Wang J., Lang X., Wang Y. (2010) Clathrate Hydrate Capture of CO2 from Simulated Flue Gas with Cyclopentane/Water Emulsion, Chinese Journal of Chemical Engineering 18, 2, 202–206. [CrossRef] [Google Scholar]
  • Li X.-S., Xu C.-G., Chen Z.-Y., Wu H.-J. (2011) Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane, Energy 36, 3, 1394–1403. [CrossRef] [Google Scholar]
  • Li X.-S., Xu C.-G., Chen Z.-Y., Jing C. (2012) Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns, International Journal of Hydrogen Energy 37, 1, 720–727. [CrossRef] [Google Scholar]
  • Lin W., Delahaye A., Fournaison L. (2008) Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2 + TBAB, Fluid Phase Equilibria 264, 1–2, 220–227. [CrossRef] [Google Scholar]
  • Linga P., Kumar R., Englezos P. (2007a) Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures, Chemical Engineering Science 62, 16, 4268–4276. [CrossRef] [Google Scholar]
  • Linga P., Kumar R., Englezos P. (2007b) The clathrate hydrate process for post and pre-combustion capture of carbon dioxide, Journal of Hazardous Materials 149, 3, 625–629. [Google Scholar]
  • Linga P., Kumar R., Lee J.-D., Ripmeester J., Englezos P. (2010) A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide, International Journal of Greenhouse Gas Control 4, 4, 630–637. [CrossRef] [Google Scholar]
  • Lipkowski J., Komorov V.Y., Rodionova T.V., Dyadin Y.A., Aladko L.S. (2002) The Structure of Tetrabutylammonium Bromide Hydrate, Journal of Supramolecular Chemistry 2, 435–439. [CrossRef] [Google Scholar]
  • McMullan R., Jeffrey G.A. (1959) Hydrates of the Tetra n-butyl and Tetra i-amyl Quaternary Ammonium Salts, Journal of Chemical Physics 31, 5, 1231–1234. [CrossRef] [Google Scholar]
  • Meunier F., Rivet P., Terrier M.F. (2007) Froid Industriel, Ed. Dunod, Paris. [Google Scholar]
  • Mizukami T. (2010) Thermal Energy Storage system with clathrate hydrate slurry, Keio University “Global COE Program” International Symposium, Clathrate Hydrates and Technology Innovations, Challenges Toward a Symbiotic Energy Paradigm, Yokohama, Japan ,15 March. [Google Scholar]
  • Mohammadi A.H., Richon D. (2009) Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane+carbon dioxide, Chemical Engineering Science 64, 24, 5319–5322. [CrossRef] [Google Scholar]
  • Mohammadi A.H., Richon D. (2010) Clathrate hydrate dissociation conditions for the methane+cycloheptane/cyclooctane+water and carbon dioxide+cycloheptane/cyclooctane+water systems, Chemical Engineering Science 65, 10, 3356–3361. [CrossRef] [Google Scholar]
  • Mohammadi A.H., Richon D. (2011) Phase equilibria of binary clathrate hydrates of nitrogen+cyclopentane/cyclohexane/methyl cyclohexane and ethane+cyclopentane/cyclohexane/methyl cyclohexane, Chemical Engineering Science 66, 20, 4936–4940. [CrossRef] [Google Scholar]
  • Nakajima M., Ohmura R., Mori Y.H. (2008) Clathrate Hydrate Formation from Cyclopentane-in-water emulsion, Ind. Eng. Chem. Res. 47, 22, 8933–8939. [CrossRef] [Google Scholar]
  • Ogoshi H., Matsuyama E., Miyamoto H., Mizukami T. (2010) Clathrate Hydrate Slurry, CHS Thermal Energy Storage System and Its Applications, Proceedings of 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology, Tokyo, Japan, 17-19 Feb. [Google Scholar]
  • Obata Y., Masuda N., Joo K., Katoh A. (2003) Advanced Technologies Towards the New Era of Energy Industries, NKK Tech. Rev. 88, 103–115. [Google Scholar]
  • Oyama H., Shimada W., Ebinuma T., Kamata Y. (2005) Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals, Fluid phase Equilib. 234, 1-2, 131–135. [CrossRef] [Google Scholar]
  • Oyama H., Ebinuma T., Nagao J., Narita H. (2008) Phase Behavior of TBAB Semiclathrate Hydrate Crystal under several Vapor Components ,Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 6-10 July. [Google Scholar]
  • Paricaud P. (2011) Modeling the Dissociation Conditions of Salt Hydrates and Gas Semiclathrate Hydrates: Application to Lithium Bromide, Hydrogen Iodide, and Tetra-n-butylammonium Bromide + Carbon Dioxide Systems, J. Phys. Chem. B 115, 2, 288–299. [CrossRef] [PubMed] [Google Scholar]
  • Riesco N., Trusler J.P.M. (2005) Novel optical flow cell for measurements of fluid phase behavior, Fluid Phase Equilibria 228-229, 233–238. [CrossRef] [Google Scholar]
  • Sabil K.M., Witkamp G.-J., Peters C.J. (2010) Phase equilibria in ternary (carbon dioxide + tetrahydrofuran + water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon, Journal of Chemical Thermodynamics 42, 1, 8–16. [CrossRef] [Google Scholar]
  • Sato K., Tokutomi H., Ohmura R. (2013) Phase Equilibrium of Ionic Semiclathrate Hydrates formed with Tetrabutylammonium Bromide and Tetrabutylammonium Chloride, Fluid Phase Equilibria 337, 115–118. [CrossRef] [Google Scholar]
  • Seo Y.-T., Kang S.-P., Lee H. (2001) Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1,4-dioxane and acetone, Fluid Phase Equilibria 189, 1-2, 99–110. [CrossRef] [Google Scholar]
  • Seo Y., Kang S.-P., Lee S., Lee H. (2008) Experimental Measurements of Hydrate Phase Equilibria for Carbon Dioxide in the Presence of THF, Propylene Oxide, and 1,4-Dioxane, J. Chem. Eng. Data 53, 2833–2837. [CrossRef] [Google Scholar]
  • Shimada W., Ebinuma T., Oyama H., Kamata Y., Takeya S., Uchida T., Nagao J., Narita H. (2003) Separation of Gas Molecule Using Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrate Crystals, Jpn J. Appl. Phys. 42, L129–L131. [CrossRef] [Google Scholar]
  • Shimada W., Ebinuma T., Oyama H., Kamata S., Narita H. (2005a) Free-growth forms and growth kinetics of tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals, J. Cryst. Growth 274, 246–250. [CrossRef] [Google Scholar]
  • Shimada W., Shiro M., Kondo H., Takeya S., Oyama H., Ebinuma T., Narita H. (2005b) Tetra-n-butylammonium bromide-water (1/38), Acta Cryst. C61, o65–o66. [Google Scholar]
  • Sloan E.D. (1998) Clathrate Hydrates of Natural Gases, 2nd edition, Marcel Dekker, New York. [Google Scholar]
  • Sloan E.D., Koh C.A. (2008) Clathrate hydrates of natural gases, 3rd ed., CRC Press, Boca Raton. [Google Scholar]
  • Spencer D.F. (1997) Methods of selectively separating CO2 from a multicomponent gaseous stream, US Patent 5700311. [Google Scholar]
  • Spencer D.F. (2000) Methods of selectively separating CO2 from a multicomponent gaseous stream, US Patent 6106595. [Google Scholar]
  • Suginaka T., Sakamoto H., Iino K., Sakakibara Y., Ohmura R. (2013) Phase Equilibrium for Ionic Semiclathrate Hydrate Formed with CO2, CH4, or N2 plus Tetrabutylphosphonium Bromide, Fluid Phase Equilibria 344, 108–111. [CrossRef] [Google Scholar]
  • Tajima H., Yamasaki A., Kiyono F. (2004) Energy consumption estimation for greenhouse gas separation processes by clahtrate hydrate formation, Energy 29, 11, 1713–1729. [CrossRef] [Google Scholar]
  • Tajima H., Kiyono F., Yamasaki A. (2010) HYPERLINK "/ qid=2&SID=Z1iFau3bbGfvwrcdbBP&page=1&doc=5". Direct Observation of the Effect of Sodium Dodecyl Sulfate (SDS) on the Gas Hydrate Formation Process in a Static Mixer, Energy & Fuels 24, 432–438. [CrossRef] [Google Scholar]
  • Takao S., Ogoshi H., Matsumato S. (2001) Air conditioning and thermal storage systems using clathrate hydrate slurry, US Patent 6560971 B2. [Google Scholar]
  • Takao S., Ogoshi H., Matsumato S. (2002) Air conditioning and thermal storage systems using clathrate hydrate slurry, US Patent 083720 A1. [Google Scholar]
  • Takao S., Ogoshi H., Fukushima S., Matsumato H. (2004) Thermal storage medium using a hydrate and apparatus thereof, and method for producing the thermal storage medium, US Patent 20050016200. [Google Scholar]
  • Thiam A., Bouchemoua A., Chauvy F., Herri J.-M. (2008) Gas Hydrates Crystallization from CO2-CH4 gas mixtures: Experiments and modelling, Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 6-10 July. [Google Scholar]
  • Tohidi B., Danesh A., Todd A.C., Burgass R.W., Østergaard K.K. (1997) Equilibrium data and thermodynamic modelling of cyclopentane and neopentane hydrates, Fluid Phase Equilibria 138, 1-2, 241–250. [CrossRef] [Google Scholar]
  • Torre J.P., Dicharry C., Ricaurte M., Daniel-David D., Broseta D. (2011) CO2 capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives, Energy Procedia 4, 621–628. [CrossRef] [Google Scholar]
  • van der Waals J.H., Platteeuw J.C. (1959) Clathrate solutions, Adv. Chem. Phys. 2, 1–57. [Google Scholar]
  • Xu C.G., Li X.S., Lv Q.N., Chen Z.Y., Cai J. (2012) Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment, Energy 44, 358–366. [CrossRef] [Google Scholar]
  • Yang H., Fan S., Lang X., Yang Y. (2011) Phase Equilibria of Mixed Gas Hydrates of Oxygen + Tetrahydrofuran, Nitrogen + Tetrahydrofuran, and Air + Tetrahydrofuran, Journal of Chemical and Engineering Data 56, 11, 4152–4156. [CrossRef] [Google Scholar]
  • Zhang J.S., Lee J.W. (2009a) Equilibrium of Hydrogen + Cyclopentane and Carbon Dioxide + Cyclopentane Binary Hydrates, Journal of Chemical and Engineering Data 54, 2, 659–661. [CrossRef] [Google Scholar]
  • Zhang J., Lee J.W. (2009b) Enhanced Kinetics of CO2 Hydrate Formation under Static Conditions, Industrial Engineering Chemistry Research 48, 13, 5934–5942. [CrossRef] [Google Scholar]
  • Zhang J., Yedlapalli P., Lee J.W. (2009) Thermodynamic analysis of hydrate-based pre-combustion capture of CO2, Chemical Engineering Science 64, 22, 4732–4736. [CrossRef] [Google Scholar]
  • Zhong Y., Rogers R.E. (2000) Surfactant effects on gas hydrate formation, Chemical Engineering Science 55, 19, 4175–4187. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.