IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 397 - 404
DOI https://doi.org/10.2516/ogst/2013119
Publié en ligne 30 septembre 2013
  • Lazarus V., Pauchard L. (2011) From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation, Soft Matter 7, 2552. [CrossRef] [Google Scholar]
  • Brinker C.J., Scherer G.W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press. [Google Scholar]
  • Kowalski S.J., Kulczyński K. (2012) Reduction of fractures in dried clay-like materials due to specific surfactants, Chem. Eng. Res. De. 91, 2, 254–263. [CrossRef] [Google Scholar]
  • Groisman A., Kaplan E. (1994) An experimental study of cracking induced by desiccation, Europhys. Lett. 25, 415. [CrossRef] [Google Scholar]
  • Boulogne F., Pauchard L., Giorgiutti-Dauphiné F. (2012) Effect of a non-volatile cosolvent on crack patterns induced by desiccation of a colloidal gel, Soft Matter 8, 8505–8510. [CrossRef] [Google Scholar]
  • Pauchard L., Abou B., Sekimoto K. (2009) Influence of mechanical properties of nanoparticles on macrocrack formation, Langmuir 25, 6672–6677. [CrossRef] [PubMed] [Google Scholar]
  • Pauchard L., Parisse F., Allain C. (1999) Influence of salt content on crack patterns formed through colloidal suspension desiccation, Phys. Rev. E 59, 3737–3740. [CrossRef] [Google Scholar]
  • Daubert T.E., Danner R.P. (1989) Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Publishing Corp. New York. [Google Scholar]
  • Neely W.B., Blau G.E. (1985) Environmental exposure from chemicals, Vol. 1, CRC Press, Inc., Boca Raton, FL. [Google Scholar]
  • D’Errico G., Ortona O., Capuano F., Vitagliano V. (2004) Diffusion coefficients for the binary system glycerol + water at 25°C. A Velocity Correlation Study, J. Chem. Eng. Data 49, 1665–1670. [CrossRef] [Google Scholar]
  • Coussot P. (2000) Scaling approach of the convective drying of a porous medium, Eur. Phys. J. B, 15, 557–566. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Xu P., Mujumdar A.S., Yu B. (2009) Drying-induced cracks in thin film fabricated from colloidal dispersions, Drying Technology: An International J. 27, 636–652. [CrossRef] [Google Scholar]
  • Bohn S., Pauchard L., Couder Y. (2005) Hierarchical crack pattern as formed by successive domain divisions, Phys. Rev. E 71, 046214. [CrossRef] [Google Scholar]
  • Dufresne E.R., Corwin E.I., Greenblatt N.A., Ashmore J., Wang D.Y., Dinsmore A.D., Cheng J.X., Xie X.S., Hutchinson J.W., Weitz D.A. (2003) Flow and fracture in drying nanoparticle suspensions, Phys. Rev. Lett. 91, 224501. [CrossRef] [PubMed] [Google Scholar]
  • Gulley G., Martin J. (2001) Stabilization of colloidal silica using polyols, J. Colloid Interface Sci. 241, 340–345. [CrossRef] [Google Scholar]
  • Provder T., Winnik M., Urban M. (1996) Film Formation in waterborne coatings, ACS Symposium. [CrossRef] [Google Scholar]
  • Tirumkudulu M.S., Russel W.B. (2005) Cracking in drying latex films, Langmuir 21, 4938–4948. [CrossRef] [PubMed] [Google Scholar]
  • Scherer G. (1989) Drying gels VII. Diffusion during drying, J. Non-Crystalline Solids 107, 135–148. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.