Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 229 - 244
Publié en ligne 28 mars 2013
  • Cavanagh J., Fairbrother W.J., Palmer A.G., Skelton N.J., Rance M. (2006) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA. [Google Scholar]
  • Bax A. (1985) A simple description of two-dimensional NMR spectroscopy, Bull. Magn. Reson. 7, 4, 167-183. [Google Scholar]
  • Bax A., Lerner L. (1986) Two-dimensional nuclear magnetic resonance spectroscopy, Science 232, 960-967. [CrossRef] [PubMed] [Google Scholar]
  • Canet D. (1996) Nuclear magnetic resonance spectroscopy. Concepts and methods, John Wiley & Sons Ltd, West Sussex, England. [Google Scholar]
  • Marshall I., Bruce S.D., Higinbotham J., MacLullich A., Wardlaw J.M., Ferguson K.J., Seckl J. (2000) Choice of spectroscopic lineshape model affects metabolite peak areas and area ratios, Magn. Reson. Med. 44, 646-649. [CrossRef] [PubMed] [Google Scholar]
  • Suvichakorn A., Antoine J.P. (2008) Analyzing NMR spectra with the Morlet wavelet, Proc. 16th European Signal Process. Conf. EUSIPCO 2008, Lausanne, Suisse, 25-29 Aug. [Google Scholar]
  • Bartha R., Drost D.J., Menon R.S., Williamson P.C. (2000) Spectroscopic lineshape correction by QUECC: Combined QUALITY deconvolution and eddy current correction, Magn. Reson. Med. 44, 641-645. [CrossRef] [PubMed] [Google Scholar]
  • Marple S.L. (1987) Digital spectral analysis with applications, Prentice Hall, Englewood Cliffs. [Google Scholar]
  • Kay S.M. (1988) Modern spectral estimation. Theory and application, Prentice Hall, Englewood Cliffs. [Google Scholar]
  • Matlengiewicz M., Henzel N., Czachowska D., Schmit-Quilès F., Nicole D., Lauer J.C. (1994) Computer aided analysis of 13C NMR spectra of multicomponent mixtures: 3. Analysis of individual components of a heavy gasoline from liquefaction of Polish coal, Fuel 73, 6, 843-850. ISSN 0016-2361. [CrossRef] [Google Scholar]
  • Bresler Y., Macovski A. (1986) Exact maximum likelihood parameter estimation of superimposed exponential signals in noise, IEEE Trans. Acoust. Speech Signal Process. 34, 5, 1081-1089. [CrossRef] [Google Scholar]
  • Rubtsov D.V., Griffin J.L. (2007) Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy, J. Magn. Reson. 188, 367-379. [CrossRef] [PubMed] [Google Scholar]
  • Kumaresan R., Tufts D.W. (1982) Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise, IEEE Trans. Acoust. Speech Signal Process. 30, 833-840. [CrossRef] [Google Scholar]
  • Kung R., Arun K.S., Bhaskar Rao D.V. (1983) State-space and singular value decomposition-based approximation methods for the harmonic retrieval problem, J. Opt. Soc. Am. 73, 12, 1799-1811. [CrossRef] [Google Scholar]
  • Hua Y., Sarkar T.K. (1990) Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process. 38, 5, 814-824. [CrossRef] [MathSciNet] [Google Scholar]
  • Barkhuijsen H., de Beer R., Bovée W.M.M.J., van Ormondt D. (1985) Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure, J. Magn. Reson. 63, 465-481. [Google Scholar]
  • Barkhuijsen H., de Beer R., van Ormondt D. (1987) Improved algorithm for noniterative time domain model fitting to exponentially damped magnetic resonance signals, J. Magn. Reson. 73, 553-557. [Google Scholar]
  • Hoch J.C., Stern A.S. (1996) NMR data processing, Wiley-Liss, New York. [Google Scholar]
  • Koehl P. (1999) Linear prediction spectral analysis of NMR data, Prog. NMR Spectr. 34, 257-299. [CrossRef] [Google Scholar]
  • Van Huffel S., Chen H., Decaniere C., Van Hecke P. (1994) Algorithm for time-domain NMR data fitting based on total least squares, J. Magn. Reson. Ser. A 110, 228-237. [CrossRef] [Google Scholar]
  • Poullet J.B., Sima D.M., Van Huffel S. (2008) MRS signal quantitation: A review of time- and frequency-domain methods, J. Magn. Reson. 195, 134-144. [CrossRef] [PubMed] [Google Scholar]
  • Clark M.P., Scharf L.L. (1994) Two-dimensional modal analysis based on maximum likelihood, IEEE Trans. Signal Process. 42, 6, 1443-1452. [CrossRef] [Google Scholar]
  • Li Y., Razavilar J., Ray K.J. (1998) A high-resolution technique for multidimensional NMR spectroscopy, IEEE Trans. Biomed. Eng. 45, 1, 78-86. [CrossRef] [PubMed] [Google Scholar]
  • Sacchini J.J., Steedly W.M., Moses R.L. (1993) Two-dimensional Prony modeling and parameter estimation, IEEE Trans. Signal Process. 41, 11, 3127-3137. [CrossRef] [Google Scholar]
  • Hua Y. (1992) Estimating two-dimensional frequencies by matrix enhancement and Matrix Pencil, IEEE Trans. Signal Process. 40, 9, 2267-2280. [CrossRef] [Google Scholar]
  • Liu X., Sidiropoulos N. (2002) On constant modulus multidimensional harmonic retrieval, Proc. IEEE ICASSP 2002, Orlando, Florida, 13-17 May, Vol. 3, pp. 2977-2980. [Google Scholar]
  • Sidiropoulos N.D. (2001) A new 2-D harmonic retrieval algorithm, Proc. 39th Allerton Conf. Comm. Control Computing, Urbana-Champaign, October. [Google Scholar]
  • Rouquette S., Najim M. (2001) Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods, IEEE Trans. Signal Process. 49, 1, 237-245. [CrossRef] [Google Scholar]
  • Wax M., Kailath T. (1985) Detection of signals by information theoretic criteria, IEEE Trans. Acoust. Speech Signal Process. 33, 2, 387-392. [Google Scholar]
  • Sandgren N., Stoica P., Frigo F.J. (2006) Area selective signal parameter estimation for two-dimensional MR spectroscopy data, J. Magn. Reson. 183, 50-59. [CrossRef] [PubMed] [Google Scholar]
  • Silverstein S.D., Engeler W.E., Tardif J.A. (1991) Parallel architectures for multirate superresolution spectrum analyzers, IEEE Trans. Circ. Syst. 38, 4, 449-453. [CrossRef] [Google Scholar]
  • Steedly W.M., Ying C.-H.J., Moses R.L. (1994) A modified TLS-Prony method using data decimation, IEEE Trans. Signal Process. 42, 9, 2292-2303. [CrossRef] [Google Scholar]
  • Tkacenko A., Vaidyanathan P.P. (2001) The role of filter banks in sinusoidal frequency estimation, J. Franklin Inst. 338, 5, 517-547. [CrossRef] [MathSciNet] [Google Scholar]
  • Zoltowski M.D., Kautz G.M., Silverstein S.D. (1993) Beamspace Root-MUSIC, IEEE Trans. Signal Process. 41, 1, 344-364. [CrossRef] [Google Scholar]
  • Tang J., Norris J.R. (1988) LP-ZOOM, a linear prediction method for local spectral analysis of NMR signals, J. Magn. Reson. 79, 190-196. [Google Scholar]
  • Mandelshtam V.A. (2001) FDM: the filter diagonalization method for data processing in NMR experiments, Prog. NMR Spectr. 38, 159-196. [CrossRef] [Google Scholar]
  • Rao S., Pearlman W. (1996) Analysis of linear prediction, coding, and spectral estimation from subbands, IEEE Trans. Inf. Theory 42, 4, 1160-1178. [CrossRef] [Google Scholar]
  • Stoica P., Nordsjö A.E. (1997) Subspace-based frequency estimation in the presence of moving-average noise using decimation, Signal Process. 63, 211-220. [CrossRef] [Google Scholar]
  • Djermoune E.-H., Tomczak M., Mutzenhardt P. (2004) An adaptive subband decomposition approach for automatic analysis of NMR data, J. Magn. Reson. 169, 1, 73-84. [CrossRef] [PubMed] [Google Scholar]
  • Dologlou I., Van Huffel S., van Ormondt D. (1998) Frequency-selective MRS data quantification with frequency prior knowledge, J. Magn. Reson. 130, 2, 238-243. [CrossRef] [PubMed] [Google Scholar]
  • Mandelshtam V.A., Taylor H.S., Shaka A.J. (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra, J. Magn. Reson. 133, 304-312. [CrossRef] [PubMed] [Google Scholar]
  • Romano R., Motta A., Camassa S., Pagano C., Santini M.T., Indovina P.L. (2002) A new time-domain frequency-selective quantification algorithm, J. Magn. Reson. 155, 2, 226-235. [CrossRef] [PubMed] [Google Scholar]
  • Stoica P., Sandgren N., Selén Y., Vanhamme L., Van Huffel S. (2003) Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy, J. Magn. Reson. 165, 1, 80-88. [CrossRef] [PubMed] [Google Scholar]
  • Tomczak M., Djermoune E.-H. (2002) A subband ARMA modeling approach to high-resolution NMR spectroscopy, J. Magn. Reson. 158, 86-98. [CrossRef] [Google Scholar]
  • Vanhamme L., Sundin T., Van Hecke P., Van Huffel S., Pintelon R. (2000) Frequency-selective quantification of biomedical magnetic resonance spectroscopy data, J. Magn. Reson. 143, 1, 1-16. [CrossRef] [PubMed] [Google Scholar]
  • Sandgren N., Selén Y., Stoica P., Li J. (2004) Parametric methods for frequency-selective MR spectroscopy, J. Magn. Reson. 168, 259-272. [CrossRef] [PubMed] [Google Scholar]
  • Coifman R.R., Wickerhauser M.V. (1992) Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory 38, 2, 713-718. [Google Scholar]
  • Donoho D.L., Johnstone I.M. (1994) Ideal denoising in an orthonormal basis chosen from a library of bases. Technical Report 461, Dept. of Statistics, Stanford University, Sept. [Google Scholar]
  • Meyer F.G., Averbuch A., Strömberg J.-O. (2000) Fast adaptive wavelet packet image compression. IEEE Trans. Image Process. 9, 5, 792-800. [CrossRef] [PubMed] [Google Scholar]
  • Moulin P. (1996) Signal estimation using adapted tree-structured bases and the MDL principle, IEEE Int. Symp. Time-Frequency and Time-Scale Analysis, Paris, 18-21 June, pp. 141-143. [Google Scholar]
  • Mainardi L.T., Origgi D., Lucia P., Scotti G., Cerutti S. (2002) A wavelet packets decomposition algorithm for quantification of in vivo 1H-MRS parameters, Med. Eng. Phys. 24, 201-208. [CrossRef] [PubMed] [Google Scholar]
  • van den Bran den Lambrecht C., Karrakchou M. (1995) Wavelet packet-based high-resolution spectral estimation, Signal Process. 47, 135-144. [CrossRef] [Google Scholar]
  • Tomczak M., Djermoune E.-H., Mutzenhardt P. (2007) High-resolution MR spectroscopy via adaptive sub-band decomposition, Castleman B.C. (ed.), New Research on Magnetic Resonance Imaging, Novascience Publishers, Chap. 9, pp. 241-289. [Google Scholar]
  • Priestley M.B. (1989) Spectral analysis and time series, Academic Press, San Diego, CA. [Google Scholar]
  • Drouiche K. (2000) A new test for whiteness, IEEE Trans. Signal Process. 48, 7, 1864-1871. [CrossRef] [MathSciNet] [Google Scholar]
  • Djermoune E.-H. (2003) Estimation des paramètres de sinusoïdes amorties par décomposition en sous-bandes adaptative. Application à la spectroscopie RMN, PhD thesis, Université Henri Poincaré, Nancy 1, France. [Google Scholar]
  • Djermoune E.-H., Tomczak M. (2004) An adapted filterbank for frequency estimation, Proc. 12th European Signal Image Process. Conf. EUSIPCO 2004, Vienna, Austria, 6-10 Sept., pp. 2171-2174. [Google Scholar]
  • Djermoune E.-H., Brie D., Tomczak M. (2009) A subband algorithm for estimating the parameters of two-dimensional exponential signals, Proc. European Signal Process. Conf., EUSIPCO 2004, Glasgow, Scotland, 25-28 Aug. [Google Scholar]
  • Djermoune E.-H., Tomczak M. (2009) Perturbation analysis of subspace-based methods in estimating a damped complex exponential, IEEE Trans. Signal Process. 57, 11, 4558-4563. [CrossRef] [MathSciNet] [Google Scholar]
  • Reddy V.U., Biradar L.S. (1993) SVD-based information theoretic criteria for detection of the number of damped/undamped sinusoids and their performance analysis, IEEE Trans. Signal Process. 41, 2872-2881. [CrossRef] [Google Scholar]
  • Denoyer L.K., Dodd J.G. (1991) Maximum likelihood deconvolution for spectroscopy and chromatography, Amer. Lab. 23, 19-22. [Google Scholar]
  • Jacques L., Duval L., Chaux C., Peyré G. (2011) A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity, Signal Process. 91, 12, 2699-2730. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.