Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 505 - 517
DOI https://doi.org/10.2516/ogst/2012053
Publié en ligne 28 mars 2013
  • Pina C.D., Dimitratos N., Falletta E., Rossi M. (2007) Catalytic Performance of Gold Catalysts in the Total Oxidation of VOCs, Gold Bull. 67-72. [Google Scholar]
  • Centeno M.A., Paulis M., Montes M., Odriozola J.A. (2002) Catalytic combustion of volatile organic compounds on Au Au/CeO2 /Al2O3 and Au/Al2O3 catalysts, Appl. Catal. A: Gen. 234, 65-78. [CrossRef] [Google Scholar]
  • Minicò S., Scirè S., Crisafulli C., Galvagno S. (2001) Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide, Appl. Catal. 34, 277-285. [CrossRef] [Google Scholar]
  • Minicò S., Scirè S., Crisafulli C., Maggiore R. (2000) Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts, Appl. Catal. B: Env. 28, 3, 245-251. [CrossRef] [Google Scholar]
  • Scirè S., Minicò S., Crisafulli C., Satriano C., Pistone A. (2003) Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts, Appl. Catal. B: Env. 40, 43-49. [CrossRef] [Google Scholar]
  • McGrath M. (1995) Catalysts and Systems for the Removal of Volatile Organic Compounds, Rev. Lit. Arts Am. 5, 3. [Google Scholar]
  • Jandeleit B., Schaefer D.J., Powers T.S., Turner H.W., Weinberg W.H. (1999) Combinatorial Materials Science and Catalysis, Angew. Chem. Int. Ed. 38, 2994-2532. [Google Scholar]
  • Senkan S. (2001) Combinatorial Heterogeneous Catalysis - A New Path in an Old Field, Angew. Chem. Int. Ed. 40, 312-329. [CrossRef] [Google Scholar]
  • Farrusseng D., Klanner C., Baumes L., Lengliz M., Mirodatos C., Schüth F. (2005) Design of Discovery Libraries for Solids Based on QSAR Models, QSAR Comb. Sci. 24, 78-93. [CrossRef] [Google Scholar]
  • Klanner C., Farrusseng D., Baumes L., Lengliz M., Mirodatos C., Schüth F. (2004) The Development of Descriptors for Solids: Teaching “Catalytic Intuition” to a Computer, Angew. Chem. Int. Ed. 43, 5347-5349. [CrossRef] [Google Scholar]
  • Klanner C., Farrusseng D., Baumes L., Mirodatos C., Schuth F. (2003) How to Design Diverse Libraries of Solid Catalysts? QSAR Comb. Sci. 22, 729-736. [CrossRef] [Google Scholar]
  • Farrusseng D. (2008) Surface Science Reports High-throughput Heterogeneous Catalysis, Surf. Sci. Rep. 63, 11, 487-513. [CrossRef] [Google Scholar]
  • Baumes L.A., Collet P. (2009) Examination of genetic programming paradigm for high-throughput experimentation and heterogeneous catalysis, Comput. Mater. Sci. 45, 1, 27-40. [CrossRef] [Google Scholar]
  • Schüth F., Baumes L., Clerc F., Demuth D., Farrusseng D., Llamas-galilea J. (2006) High throughput experimentation in oxidation catalysis: Higher integration and “intelligent” software, Catal. Today 117, 284-290. [CrossRef] [Google Scholar]
  • Rodemerck B.U., Ignaszewski P., Lucas M., Claus P. (2000) Parallel Synthesis and Fast Catalytic Testing of Catalyst Libraries for Oxidation Reactions, Chem. Eng. Technol. 117, 413-416. [CrossRef] [Google Scholar]
  • Buyevskaya O.V., Brückner A., Kondratenko E.V., Wolf D., Baerns M. (2001) Fundamental and combinatorial approaches in the search for and optimisation of catalytic materials for the oxidative dehydrogenation of propane to propene, Catal. Today 67, 369-378. [CrossRef] [Google Scholar]
  • Tibiletti D., de Graaf E.A.B., Teh S.P., Rothenberg G., Farrusseng D., Mirodatos C. (2004) Selective CO oxidation in the presence of hydrogen: fast parallel screening and mechanistic studies on ceria-based catalysts, J. Catal. 225, 2, 489-497. [CrossRef] [Google Scholar]
  • Claus P., Hönicke D., Zech T. (2001) Miniaturization of screening devices for the combinatorial development of heterogeneous catalysts, Catal. Today 67, 319-339. [CrossRef] [Google Scholar]
  • Huybrechts W., Jacobs P.A., Martens J.A. (2003) Development of a fixed-bed continuous-flow high-throughput reactor for long- chain n-alkane hydroconversion, Appl. Catal. A: Gen. 243, 1-13. [CrossRef] [Google Scholar]
  • Lucas M., Claus P. (2003) High throughput screening in monolith reactors for total oxidation reactions, Appl. Catal. A: Gen. 254, 35-43. [CrossRef] [Google Scholar]
  • Hoffmann C., Wolf A., Schüth F. (1999) Parallel Synthesis and Testing of Catalysts Conditions, Angew. Chem. Int. Ed. 38, 18, 2800-2803. [CrossRef] [Google Scholar]
  • Beckers J., Gaudillère C., Farrusseng D., Rothenberg G. (2009) Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation, Green Chem. 11, 9, 921-925. [CrossRef] [Google Scholar]
  • Ras E.-J., Maisuls S., Haesakkers P., Gruter G.-J., Rothenberg G. (2009) Selective Hydrogenation of 5-Ethoxymethylfurfural over Alumina-Supported Heterogeneous Catalysts, Adv. Synth. Catal. 351, 18, 3175-3185. [CrossRef] [Google Scholar]
  • Biniwale R.B., Yamashiro H., Ichikawa M. (2005) In situ infrared thermographic analysis during dehydrogenation of cyclohexane over carbon-supported Pt catalysts using spray- pulsed reactor, Catal. Lett. 102, 1-2, 23-31. [CrossRef] [Google Scholar]
  • Brooks C., Cypes S., Grasselli R.K., Hagemeyer A., Hogan Z., Lesik A. (2006) High throughput discovery of CO oxidation / VOC combustion and water – gas shift catalysts for industrial multi-component streams, Topics Catal. 38, 1-3, 59-62. [CrossRef] [Google Scholar]
  • Maier W.F., Olong N.E., Stöwe K. (2007) A combinatorial approach for the discovery of low temperature soot oxidation catalysts, Appl. Catal. B: Env. 74, 19-25. [CrossRef] [Google Scholar]
  • Biniwale R.B., Ichikawa M. (2007) Thermal imaging of catalyst surface during catalytic dehydrogenation of cyclohexane under spray-pulsed conditions, Chem. Eng. Sci. 62, 7370-7377. [CrossRef] [Google Scholar]
  • Reetz M.T., Becker M.H., Kühling K.M., Holzwarth A. (1998) Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions, Angew. Chem. Int. Ed. 37, 19, 2647-2650. [CrossRef] [Google Scholar]
  • Cordi E.M., Falconer J.L. (1996) Oxidation of Volatile Organic Compounds on Al2O3, Pd/Al2O3 and PdO/Al2O3 Catalysts, J. Catal. 162, 104-117. [CrossRef] [Google Scholar]
  • Cordi E.M., Falconer J.L. (1997) Oxidation of volatile organic compounds on a Ag/A12O3 catalyst, Appl. Catal. A: Gen. 151, 179-191. [CrossRef] [Google Scholar]
  • Papaefthimiou P., Ioannides T., Verykios E. (1997) Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts, Appl. Catal. B: Env. 13, 175-184. [CrossRef] [Google Scholar]
  • Cordi E.M., Peter J.O., Falconer J.L. (1997) Transient oxidation of volatile organic compounds on a CuO/A12O3 catalyst, Appl. Catal. B: Env. 14, 23-36. [CrossRef] [Google Scholar]
  • Perrichon V., Laachir A., Bergeret G., Frety R., Tournayan L. (1994) Reduction of Cerias with Different Textures by Hydrogen and their Reoxidation by Oxygen, J. Chem. Soc. Faraday Trans. 90, 5, 773-781. [CrossRef] [Google Scholar]
  • Yao H.C., Yao Yu Y.F. (1984) Ceria in automotive exhaust catalysts: I. Oxygen storage, J. Catal. 86, 2, 254-265. [CrossRef] [Google Scholar]
  • Sayle T.X., Parker S.C., Catlow C.R.A. (1994) The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide, Surface Sci. 316, 3, 329-336. [CrossRef] [Google Scholar]
  • Bevan D.J.M. (1955) Ordered intermediate phases in the system CeO2/Ce2O3, J. Inorg. Nucl. Chem. 1, 1-2, 49-59. [CrossRef] [Google Scholar]
  • Brunelle J.P. (1978) Preparation of catalysts by metallic complex adsorption on mineral oxides, Pure Appl. Chem. 50, 1211-1229. [CrossRef] [Google Scholar]
  • Tribus M., Szonyi G. (1989) Quality Progress 22, 46. [Google Scholar]
  • Montgomery D.C., Mastrangelo C.M. (1991) Some statistical process control methods for autocorrelated data, J. Qual. Technol. 23, 179-193. [Google Scholar]
  • Thathagar M.B., Beckers J., Rothenberg G. (2003) Combinatorial Design of Copper-Based Mixed Nanoclusters: New Catalysts for Suzuki Cross-Coupling, Adv. Synth. Catal. 345, 8, 979-985. [CrossRef] [Google Scholar]
  • Jolly J., Pavageau B., Guirardel M. (2011) WO 2011/070296 A1. [Google Scholar]
  • Iojoiu E.E., Bassou B., Guilhaume N., Farrusseng D., Desmartin-Chomel A., Lombaert K., Bianchi D., Mirodatos C. (2008) High-throughput approach to the catalytic combustion of Diesel soot, Catal. Today 137, 103-109. [CrossRef] [Google Scholar]
  • Teschner D., Wootsch A., Roder T., Matusek K., Paal Z. (2001) Ceria as a new support of noble metal catalysts for hydrocarbon reactions: chemisorption and catalytic studies, Solid State Ion. 141-142, 709-713. [CrossRef] [Google Scholar]
  • Pino L., Vita A., Cordaro M., Recupero V. (2003) A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles, Appl. Catal. A: Gen. 243, 135-146. [CrossRef] [Google Scholar]
  • Knell A., Barnickel P., Baiker A., Wokaun A. (1997) CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior and reaction mechanism, J. Catal. 137, 306-321. [CrossRef] [Google Scholar]
  • Ivanova S., Petit C., Pitchon V. (2004) A new preparation method for the formation of gold nanoparticles on an oxide support, Appl. Catal. A: Gen. 267, 191-201. [CrossRef] [Google Scholar]
  • Avgouropoulos G., Ioannides T. (2006) Effect of synthesis parameters on catalytic properties of CuO-CeO2, Appl. Catal. B: Env. 67, 1-11. [CrossRef] [Google Scholar]
  • Haruta M. (1997) Size- and support-dependency in the catalysis of gold, Catal. Today 36, 153-166. [CrossRef] [Google Scholar]
  • Guzman J., Carrettin S., Corma A. (2005) Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2, J. Am. Chem. Soc. 127, 10, 3286-3287. [CrossRef] [PubMed] [Google Scholar]
  • Kondarides D.I., Verykios X.E. (1998) Effect of Chlorine on the Chemisorptive Properties of Rh/CeO2 Catalysts Studied by XPS and Temperature Programmed Desorption Techniques, J. Catal. 174, 52-64. [CrossRef] [Google Scholar]
  • Dominguez M.I., Sanchez M., Centeno M.A., Montes M., Odriozola J.A. (2007) 2-Propanol oxidation over gold supported catalysts coated ceramic foams prepared from stainless steel wastes, J. Mol. Catal. A: Chem. 277, 1-2, 145-154. [CrossRef] [Google Scholar]
  • Mestl G. (2000) In situ Raman spectroscopy – a valuable tool to understand operating catalysts, J. Mol. Catal. A: Chem. 158, 45-65. [CrossRef] [Google Scholar]
  • Shannon R.D., Prewitt C.T. (1969) Effective ionic radii in oxides and fluorides, Acta Crystallogr. B 25, 925-946. [Google Scholar]
  • Zhang F., Chan S.-W., Spanier J.E., Apak E., Jin Q., Robinson R.D., Herman I.P. (2002) Cerium oxide nanoparticles: Size- selective formation and structure analysis, Appl. Phys. Lett. 80, 1, 127-129. [CrossRef] [Google Scholar]
  • Maher R.C., Cohen L.F., Lohsoontorn P., Brett D.J.L., Brandon N.P. (2008) Raman Spectroscopy as a Probe of Temperature and Oxidation State for Gadolinium-Doped Ceria Used in Solid Oxide Fuel Cells, J. Phys. Chem. A 112, 1497-1501. [CrossRef] [PubMed] [Google Scholar]
  • Jolly J., Pavageau B., Tatibouët J.-M. (2011) Time-resolved IR thermographic detection of gaseous molecules adsorption on oxide supports, QIRT J. 8, 2, 129-137. [CrossRef] [Google Scholar]
  • Jolly J., Pavageau B. (2011) WO 2011/070295 A1. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.