Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 5, September-October 2012
Page(s) 787 - 804
DOI https://doi.org/10.2516/ogst/2012056
Publié en ligne 22 novembre 2012
  • Atkins P.W. (1984) The Second Law – Energy, Chaos and Form, Scientific American Library, W.H. Freeman and Co, New York, ISBN 0-7167-6006-1. [Google Scholar]
  • Avraam D.G., Kolonis G.B., Roumeliotis T.C., Constantinides G.N., Payatakes A.C. (1994) Steady-state two-phase flow through planar and nonplanar model porous media, Transport Porous Med. 16, 1, 75-101. [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995) Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J. Fluid Mech. 293, 207-236. [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1999) Flow Mechanisms, Relative Permeabilities and Coupling Effects in Steady-State Two-Phase Flow in Porous Media. Case of Strong Wettability, Ind. Eng. Chem. Res. 38, 778-786. [Google Scholar]
  • Bentsen R.G. (2005) Interfacial Coupling in Vertical, Two-Phase Flow Through Porous Media, Pet. Sci. Technol. 23, 1341-1380. [CrossRef] [Google Scholar]
  • Campisi M., Kobe D.H. (2010) Derivation of the Boltzmann principle, Am. J. Phys. 78, 6, 608-615. [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (1991) A theoretical model of collision and coalescence of ganglia in porous media, J. Colloid Interface Sci. 141, 2, 486-504. [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (1996) Network simulation of steady-state two-phase flow in consolidated porous media, AIChE J. 42, 2, 369-382. [CrossRef] [PubMed] [Google Scholar]
  • Dias M.M., Payatakes A.C. (1986a) Network models for two-phase flow in porous media. Part 1. Immiscible microdisplacement of nonwetting fluids, J. Fluid Mech. 164, 305-336. [Google Scholar]
  • Dias M.M., Payatakes A.C. (1986b) Network models for two-phase flow in porous media. Part 2; Motion of oil ganglia, J. Fluid Mech. 164, 337-358. [Google Scholar]
  • Hassanizadeh M.S., Gray W.G. (1993) Thermodynamic basis of capillary pressure in porous media, Water Resour. Res. 29, 10, 3389-3405. [Google Scholar]
  • Hinkley R.E., Dias M.M., Payatakes A.C. (1987) On the motion of oil ganglia in porous media, Physicochem. Hydrodynamics 8, 2, 185-211. [Google Scholar]
  • IFP Energies nouvelles (2011) Context and Objectives of the International Conference on Flows and Mechanics in Natural Porous Media from Pore to Field Scale - Pore2Field, Les Rencontres Scientifiques d’IFP Energies nouvelles, Rueil- Malmaison, France 16-18 Nov. [Google Scholar]
  • Joekar-Niasar V., Hassanizadeh S.M. (2012) Uniqueness of Specific Interfacial Area-Capillary Pressure-Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow, Transport Porous Med. 94, 465-486. [CrossRef] [Google Scholar]
  • Joekar-Niasar V., Hassanizadeh S.M. (2011) Specific interfacial area : The missing state variable in two-phase flow equations? Water Resour. Res. 47, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, W05513. [Google Scholar]
  • Kirkpatrick S. (1973) Percolation and Conduction, Rev. Modern Phys. 45, 4, 574-588. [Google Scholar]
  • Ng K.M., Payatakes A.C. (1985) Critical evaluation of the flow rate-pressure drop relation in permeability models, AIChE J. 31, 9, 1569-1571. [Google Scholar]
  • Payatakes A.C. (1982) Dynamics of oil ganglia during immiscible displacement in water-wet porous media, Annu. Rev. Fluid Mech. 14, 365-393. [Google Scholar]
  • Payatakes A.C., Dias M.M. (1984) Immiscible microdisplacement and ganglion dynamics in porous media, Rev. Chem. Eng. 2, 2, 94. [Google Scholar]
  • Payatakes A.C., Valavanides M.S. (1998) True-to-mechanism macroscopic theory of steady-state two-phase flow in porous media, in Computational Methods in Water Resources XII, Vol. 2, Burganos V.N. et al. (eds), pp. 3-10, ISBN 1-85312-653-5. [Google Scholar]
  • Payatakes A.C., Ng K.M., Woodham G. (1981) Monte-Carlo Simulation of the Fate of Oil Ganglia During Immiscible Dispacement in Water-Wet Granular Porous Media, J. Sound Vibration 1, C.1.1-C.1.26. [Google Scholar]
  • Payatakes A.C., Constantinides G.N., Valavanides M.S. (1998) Hierarchical Theoretical Models : An Informal Introduction, in Mathematical Methods in Scattering Theory and Biomedical Technology, Dassios G. et al. (eds), Pitman Research Notes in Mathematics Series, No. 390, pp. 158-169, Addison Wesley Longman Ltd, ISBN 0582368049. [Google Scholar]
  • Taber J.J., Martin F.D., Seright R.S. (1997a) EOR Screening Criteria Revisited – Part 1 : Introduction to Screening Criteria and Enhanced Recovery Field Projects, SPE Reservoir Eng. SPE35385, pp.189-198. [Google Scholar]
  • Taber J.J., Martin F.D., Seright R.S. (1997b) EOR Screening Criteria Revisited – Part 2 : Applications and Impact of Oil Prices, SPE Reservoir Eng., SPE39234, pp.199-205. [Google Scholar]
  • Tallakstad K.T., Knudsen H.A., Ramstad T., Løvoll G., Maløy K.J., Toussaint R., Flekkøy E.G. (2009) Steady-State Two-Phase Flow in Porous Media : Statistics and Transport Properties, Phys. Rev. Lett. 102, 074502. [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G., Payatakes A.C. (2007) Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks, Adv. Water Resour. 30, 1981-1992. [Google Scholar]
  • Valavanides M.S. (2010) Optimum Operating Conditions for Two-Phase Flow in Pore Network Systems : Conceptual Justification Based on Statistical Thermodynamics, 2010 SPE Annual Technical Conference and Exhibition, Florence, Italy, 19-22 Sept., SPE135429. [Google Scholar]
  • Valavanides M.S. (2011) A Retrospective View of Relative Permeability Curves for Steady-State Two-Phase Flow in Porous Media : Reveal of Optimum Operating Conditions, International Conference on Flows and Mechanics in Natural Porous Media from Pore to Field Scale - Pore2Field, Les Rencontres Scientifiques d’IFP Energies nouvelles, Rueil-Malmaison, France 16-18 November. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (1998) Prediction of the relative permeabilities for steady-state two-phase flow in porous media, using a mechanistic-thermodynamic model, ECMOR VI 6th European Conference on the Mathematics of Oil Recovery, Peebles, Scotland, 8-11 Sept. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2000) A true-to-mechanism model of steady-state two-phase flow in porous media, including the contribution of the motion of ganglia and droplets, Computational Methods in Water Resources XIII, Vol. 1, Bentley L.R. et al. (eds), A.A Balkema, Rotterdam, The Netherlands, pp. 239-243, ISBN 9058091236. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2001) True-to-Mechanism Model of Steady-State Two-Phase Flow in Porous Media, using Decomposition into Prototype Flows, Adv. Water Resour. 24, 3-4, 385-407. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2002) Effects of Pore Network Characteristics on Steady-State Two-Phase Flow Based on a Trueto- Mechanism Model (DeProF), 10th ADIPEC Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 13-16 Oct., SPE78516, pp. 379-387. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2003) Prediction of Optimum Operating Conditions for Steady-State Two-Phase Flow in Pore Network Systems Using the DeProF True-to-Mechanism Theoretical Model, SCA2003-18, 2003 International Symposium of the Society of Core Analysts, Pau, France, 21-25 Sept. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2004) Wetting Film Effects on Steady-State Two-Phase Flow in Pore Networks using the DeProF Theoretical Model, 11th ADIPEC Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 10-13 Oct., SPE88713. [Google Scholar]
  • Valavanides M.S., Constantinides G.N., Payatakes A.C. (1998) Mechanistic Model of Steady-State Two-Phase Flow in Porous Media Based on Ganglion Dynamics, Transport Porous Med. 30, 3, 267-299. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.