Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 461 - 477
Publié en ligne 24 novembre 2009
  • Kmak W.S. (1971) A Kinetic Simulation Model of the Powerforming Process, AIChE National Meeting, Houston, TX, March 3, 1971. [Google Scholar]
  • Ramage M.P., Graziani K.R., Krambeck F.J. (1980) Development of Mobil’s Reforming Model, Chem. Eng. Sci. 35, 1, 41-48. [CrossRef] [Google Scholar]
  • Marin G.B., Froment G.F., Lerou J.J., De Backer W. (1983) Simulation of a Catalytic Naphtha Reforming Unit, Proceedings of the Third International Congress on Computers & Chemical Engineering 27, 2, C117/1-C117/7. [Google Scholar]
  • Weekman V.W., Nace D.M. (1970) Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors, AIChE J. 16, 3, 397-404. [CrossRef] [Google Scholar]
  • Jacob S.M., Gross B., Voltz S.E., Weekman V.W. (1976) A Lumping and Reaction Scheme for Catalytic Cracking, AIChE J. 22, 4, 701-713. [CrossRef] [Google Scholar]
  • Pitault I., Nevicato D., Forissier M., Bernard J.R. (1994) Kinetic Model Based on a Molecular Description for Catalytic Cracking of Vacuum Gas Oil, Chem. Eng. Sci. 49, 24A, 4249-4262. [CrossRef] [Google Scholar]
  • Stangeland B.E. (1974) A Kinetic Model for the Prediction of Hydrocracker Yields, Ind. Eng. Chem. Process Design Dev. 13, 1, 71-76. [Google Scholar]
  • Koseoglu R.O., Phillips C.R. (1988) Kinetic Models for the Non-Catalytic Hydrocracking of Athabasca Bitumen, Fuel 67, 6, 906-915. [CrossRef] [Google Scholar]
  • Parnas R.S., Allen D.T. (1988) Compound Class Modeling of Hydropyrolysis, Chem. Eng. Sci. 43, 10, 2845-2857. [CrossRef] [Google Scholar]
  • Trauth D.M. (1993) Structure of Complex Mixtures through Characterization, Reaction, and Modeling, PhD Thesis, University of Delaware. [Google Scholar]
  • Mosby J.F., Buttke R.D., Cox J.A., Nokolaides C. (1986) Process Characterization of Expanded-Bed Reactors in Series, Chem. Eng. Sci. 41, 4, 989-995. [CrossRef] [Google Scholar]
  • Gray M.R. (1990) Lumped Kinetics of Structural Groups: Hydrotreating of Heavy Distillate, Ind. Eng. Chem. Res. 29, 4, 505-512. [CrossRef] [Google Scholar]
  • López-García C., Roy-Auberger M., Chapus T., Baco F. (2003) Analysis and Kinetic Modeling in ULSD Hydrotreating, Preprint Paper of the American Chemical Society’s Division of Fuel Chemistry 48, 2, 681-682. [Google Scholar]
  • Schweitzer J.M., Kressmann S. (2004) Ebullated bed reactor modeling for residue conversion, Chem. Eng. Sci. 59, 22-23, 5637-5645. [Google Scholar]
  • Wang F.C.Y., Robbins W.K., Di Sanzo F.P., McElroy F.C. (2003) Speciation of Sulfur-Containing Compounds in Diesel by Comprehensive Two-Dimensional Gas Chromatography, J. Chromatogr. Sci. 41, 10, 519-523. [PubMed] [Google Scholar]
  • Dartiguelongue C., Hudebine D., Bertoncini F., Lopez-Garcia C., Chapus T. (2006) Comparison of experimental and modelled data for sulfur molecular distribution in diesel feeds from various origins, Preprint Paper of the American Chemical Society’s Division of Petroleum Chemistry 51, 2, 299-302. [Google Scholar]
  • Adam F., Bertoncini F., Brodusch N., Durand E., Thiébaut D., Espinat D., Hennion M.C. (2007) New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography, J. Chromatogr. A 1148, 1, 55-64. [CrossRef] [PubMed] [Google Scholar]
  • López García C., Becchi M., Grenier-Loustalot M.F., Païsse O., Szymanski R. (2002) Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS, Anal. Chem. 74, 15, 3849-3857. [CrossRef] [PubMed] [Google Scholar]
  • Liguras D.K., Allen, D.T. (1989) Structural Models for Catalytic Cracking 1. Model Compound Reactions, Ind. Eng. Chem. Res. 28, 6, 665-673. [CrossRef] [Google Scholar]
  • Liguras D.K., Allen, D.T. (1989) Structural Models for Catalytic Cracking 2. Model Compound Reactions, Ind. Eng. Chem. Res. 28, 6, 674-683. [CrossRef] [Google Scholar]
  • Allen D.T., Liguras D.K. (1991) Structural Models of Catalytic Cracking Chemistry: A Case Study of a Group Contribution Approach to Lumped Kinetic Modeling, Chemical Reactions in Complex Mixtures: The Mobil Workshop, Sapre A.V., Krambeck F.J. (eds), Van Nostrand Reinhold, New-York. [Google Scholar]
  • Khorasheh F., Khaledi R., Gray M.R. (1998) Computer generation of representative molecules for heavy hydrocarbon mixtures, Fuel 77, 4, 241-253. [Google Scholar]
  • Hudebine D. (2003) Reconstruction moléculaire de coupes pétrolières, PhD Thesis, École Normale Supérieure de Lyon. [Google Scholar]
  • Hudebine D., Vera, C., Wahl F., Verstraete J. (2002) Molecular Representation of Hydrocarbon Mixtures from Overall Petroleum Analyses, 2002 AIChE Spring Meeting, New Orleans, LA, March 10-14, 2002, Paper 27a, 15-24. [Google Scholar]
  • Van Geem K.M., Hudebine D., Reyniers M.F., Wahl F., Verstraete J.J., Marin G.B. (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31, 9, 1020-1034. [CrossRef] [Google Scholar]
  • Hudebine D., Verstraete J.J. (2009) Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to the FCC gasolines, Oil Gas Sci. Technol.Rev. IFP (in press – this volume). [Google Scholar]
  • Quann R.J., Jaffe S.B. (1992) Structure-Oriented Lumping: Describing the Chemistry of Complex Hydrocarbon Mixtures, Ind. Eng. Chem. Res. 31, 11, 2483-2497. [CrossRef] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1996) Building Useful Models of Complex Reaction Systems in Petroleum Refining, Chem. Eng. Sci. 51, 10, 1615-1635. [CrossRef] [Google Scholar]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 9840-9852. [CrossRef] [Google Scholar]
  • Zhang Y. (1999) A Molecular Approach for Characterization and Property Predictions of Petroleum Mixtures with Applications to Refinery Modelling, PhD Thesis, University of Manchester. [Google Scholar]
  • Neurock M. (1992) A Computational Chemical Reaction Engineering Analysis of Complex Heavy Hydrocarbon Reaction Systems, PhD Thesis, University of Delaware. [Google Scholar]
  • Neurock M., Nigam A., Trauth D.M., Klein M.T. (1994) Molecular Representation of Complex Hydrocarbon Feedstocks through Efficient Characterization and Stochastic Algorithms, Chem. Eng. Sci. 49, 24, 4153-4177. [CrossRef] [Google Scholar]
  • Trauth D.M., Stark S.M., Petti T.F., Neurock M., Klein M.T. (1994) Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energ. Fuel. 8, 3, 576-580. [Google Scholar]
  • Hudebine D., Verstraete J.J. (2004) Molecular Reconstruction of LCO Gasoils from Overall Petroleum Analyses, Chem. Eng. Sci. 59, 22-23, 4755-4763. [CrossRef] [Google Scholar]
  • Verstraete J.J., Revellin N., Dulot H., Hudebine D. (2004) Molecular reconstruction of vacuum gasoils, Preprint Paper of the American Chemical Society’s Division of Fuel Chemistry 49, 1, 20-2. [Google Scholar]
  • Wei J., Kuo J.C.W (1969) Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System, Ind. Eng. Chem. Fund. 8, 1, 114-123. [Google Scholar]
  • Li G., Rabitz H.A. (1989) A General Analysis of Exact Lumping in Chemical Kinetics, Chem. Eng. Sci. 44, 6, 1413-1430. [CrossRef] [Google Scholar]
  • Fafet A., Magné-Drisch J. (1995) Analyse quantitative détaillée des distillats moyens par couplage CG/MS, Oil Gas Sci. Technol. – Rev. IFP 50, 3, 391-404. [CrossRef] [EDP Sciences] [Google Scholar]
  • Castex H., Boulet R., Juguin J., Lepinasse A. (1983) Analysis of Kerosenes and Middle Distillates by Medium-Resolution Mass Spectrometry, Oil Gas Sci. Technol. – Rev. IFP 38, 4, 523-532. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fafet A., Bonnard J., Prigent F. (1999) New Developments in Mass Spectrometry for Group-Type Analysis of Petroleum Cuts. First Part: Improving Quantification of Sulphured Aromatic Compounds in Middle Distillates, Oil Gas Sci. Technol. – Rev. IFP 54, 4, 439-452. [Google Scholar]
  • Fafet A., Bonnard J., Prigent F. (1999) New Developments in Mass Spectrometry for Group-Type Analysis of Petroleum Cuts. Second Part: Development and Validation of a New Inlet System for Heavy Cuts, Oil Gas Sci. Technol. – Rev. IFP 54, 4, 453-462. [Google Scholar]
  • Benson S.W. (1968) Thermochemical Kinetics, J. Wiley and Sons, New York. [Google Scholar]
  • Benson S.W., Buss J.H. (1958) Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties, J. Chem. Phys. 29, 546-572. [CrossRef] [Google Scholar]
  • Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsh R. (1969) Additivity Rules for the Estimation of Thermochemical Properties, Chem. Rev. 69, 279-324. [Google Scholar]
  • Benson S.W. (1976) Thermochemical Kinetics, Second edition, J. Wiley and Sons, New York. [Google Scholar]
  • Joback K.G., Reid R.C. (1987) Estimation of Pure-Component Properties from Group-Contributions, Chem. Eng. Commun. 57, 1-6, 233-243. [CrossRef] [Google Scholar]
  • Constantinou L., Gani R. (1994) New Group Contribution Method for Estimating Properties of Pure Compounds, AIChE J. 40, 10, 1697-1710. [Google Scholar]
  • Thermodynamic Research Center (1999) TRC Thermodynamic Tables, Thermodynamics Research Center, The Texas A&M University System, College Station, TX. [Google Scholar]
  • Marrero-Morejon J., Pardillo-Fontdevila E. (1999) Estimation of Pure Compound Properties Using Group-Interaction Contributions, AIChE J. 45, 3, 615-621. [CrossRef] [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The Properties of Gases and Liquids, Fourth Edition, McGraw-Hill Book Co., New York. [Google Scholar]
  • Yamada T., Gunn R.D. (1973) Saturated Liquid Molar Volumes. Rackett Equation, J. Chem. Eng. Data 18, 2, 234-236. [CrossRef] [Google Scholar]
  • López García C., Hudebine D., Schweitzer J.M., Verstraete J.J., Ferré D. (2009) In-Depth Modeling of Gas Oil Hydrotreating: From Feedstock Reconstruction to Reactor Stability Analysis, Catal. Today (in press). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.