Dossier: CO2 Storage in the Struggle against Climate Change (Part 2)
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Numéro 4, July-August 2010
Dossier: CO2 Storage in the Struggle against Climate Change (Part 2)
Page(s) 565 - 580
DOI https://doi.org/10.2516/ogst/2009071
Publié en ligne 27 novembre 2009
  • Power M.T., Leicht M.A., Barnett K.L. (1989) Converting Wells in a Mature West Texas Field for CO2 Injection, SPE Paper 20099. [Google Scholar]
  • Mizenko G.J. (1992) North Cross (Devonian) Unit CO2 Flood: Status Report, SPE/DOE Paper 24210. [Google Scholar]
  • McDaniel Branting J.K., Whitman D.L. (1992) The feasibility of using CO2 EOR Techniques in the powder river basin of Wyoming, SPE Paper 24337, Casper, Wyoming. [Google Scholar]
  • Barlet-Gouédard V., Rimmelé G., Goffé B., Porcherie O. (2006) Mitigation strategies for the risk of CO2 migration through wellbores, IADC/SPE 98924, Miami, USA, February. [Google Scholar]
  • Barlet-Gouédard V., Rimmelé G., Goffé B., Porcherie O. (2007) Well Technologies for CO2 Geological Storage: CO2-resistant cement, Oil Gas Sci. Technol. 62, 3, 1-12. [Google Scholar]
  • Barlet-Gouédard V., Rimmelé G., Porcherie O., Quisel N., Desroches J. (2008) A solution against well cement degradation under CO2 geological storage environment, Int. J. Greenhouse Gas Control 3, 206-216. [CrossRef] [Google Scholar]
  • Rimmele G., Barlet-Gouédard V., Porcherie O., Goffé B., Brunet F. (2008) Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, Cement Concrete Res. 38, 1038-1048. [CrossRef] [Google Scholar]
  • Kutchko B., Strazisar B., Dzombak D., Lowry G., Thaulow N. (2007) Degradation of well cement by CO2 under geologic sequestration conditions, Environ. Sci. Technol. 41, 4787-4792. [CrossRef] [PubMed] [Google Scholar]
  • Jacquemet N., Pironon J., Caroli E. (2005) A new experimental procedure for simulation of H2S + CO2 geological storage - Application to well cement aging, Oil Gas Sci. Technol. 60, 1, 93-206. [Google Scholar]
  • Carey J.W., Wigand M., Chipera S. (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC unit, West Texas, USA, Int. J. Greenhouse Gas Control 1, 75-85. [CrossRef] [Google Scholar]
  • Bachu S. (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change, Energ. Convers. Manage. 41, 9, 953-970. [CrossRef] [Google Scholar]
  • Wong T.F., David C., Zhu W. (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation, J. Geophys. Res. 102, 3009-3025. [CrossRef] [Google Scholar]
  • Spycher N., Pruess K., Ennis-King J. (2003) CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar, Geochim. Cosmochim. Ac. 67, 16, 3015-3031. [Google Scholar]
  • Spycher N., Pruess K. (2005) CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12-100°C and up to 600 bar, Geochim. Cosmochim. Ac. 69, 13, 3309-3320. [Google Scholar]
  • Portier S. (2005) Solubilité de CO2 dans les saumures des basins sedimentaires. Application au stockage de CO2 (gaz à effet de serre), PhD Thesis, Université Louis Pasteur, Strasbourg I. [Google Scholar]
  • Portier S., Rochelle C. (2005) Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300°C and from 1 to 300 bar. Application to the Utsira Formation at Sleipner, Chem. Geol. 217, 187-199. [CrossRef] [Google Scholar]
  • Hollister L.S. (1981) Information intrinsically available from fluid inclusions, in Fluid inclusions: applications to petrology, Hollister and Crawford (ed.), Mineral association of Canada, Short course handbook, 6, 1-12. [Google Scholar]
  • Blencoe J.G., Naney M.T., Anovitz L.M. (2001) The CO2-H2O system: III. A new experimental method for determining liquidvapor equilibria at high subcritical temperatures, Am. Mineral. 86, 1000-1111. [Google Scholar]
  • Blencoe J.G. (2004) The CO2-H2O system: IV. Empirical, isothermal equations for representing vapor-liquid equilibria at 110-350°C, P ≤ 150 MPa, Am. Mineral. 89, 1447-1455. [Google Scholar]
  • Schaef H.T, McGrail B.P. (2004) Direct measurements of pH and dissolved CO2 in H2O-CO2 brine mixtures to supercritical conditions, Pacific Northwest National Laboratory, Richland, USA. [Google Scholar]
  • Toews K.L., Shroll R.M., Wai C.M. (1995) pH-defining equilibrium between water and supercritical CO2. Influence on SFE of organics and metal chelates, Anal. Chem. 67, 4040-4043. [CrossRef] [Google Scholar]
  • Tovey N.K., Hounslow M.W. (1995) Quantitative micro-porosity and orientation analysis in soils and sediments, J. Geol. Soc. London 152, 119-129. [CrossRef] [Google Scholar]
  • Abdullah W.S., Alshibli K.A., Al-Zou’bi M.S. (1999) Influence of pore water chemistry on the swelling behavior of compacted clays, Appl. Clay Sci. 15, 447-462. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.