Dossier: Simulation Tools for Powertrain Design and Control
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 3, May-June 2009
Dossier: Simulation Tools for Powertrain Design and Control
Page(s) 223 - 242
DOI https://doi.org/10.2516/ogst/2008055
Publié en ligne 4 juin 2009
  • Tabaczynski R., Ferguson C., Radhakrishnan K. (1977) A turbulent entrainment model for spark ignition engine combustion, SAE Paper 770647. [Google Scholar]
  • Heywood J.B., Higgins J., Watts P., Tabaczynski R. (1979) Development and use of a cycle simulation to predict SI engine efficiency and Nox emissions, SAE Paper 790291. [Google Scholar]
  • Matthews R., Hall M. (1996) Combustion modeling in SI engines with a peninsula-fractal combustion model, SAE Paper 960072. [Google Scholar]
  • D'Errico G., Ferrari G., Onorati A., Cerri T. (2002) Modelling the pollutant emissions from a SI engine, SAE Paper 2002-01-0006. [Google Scholar]
  • Lafossas F.-A., Colin O., Le Berr F., Menegazzi P. (2005) Application of a New 1D Combustion Model to Gasoline Transient Engine Operation, SAE Paper 2005-01-2107. [Google Scholar]
  • Emery P.,Maroteaux F.,Sorine M. (2003) Modeling of combustion in gasoline direct injection engines for the optimization of engine management system trough reduction of three-dimensional models to (nxone-dimensional) models, J. Fluid. Eng. 125, 520-532. [Google Scholar]
  • Colin O.,Benkenida A.,Angelberger C. (2003) A 3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines, Oil Gas Sci. Technol. 58, 47-62. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Comb. Inst. 2, doi:10.1016/j.proci.2006.07.086. [Google Scholar]
  • Woschni G. (1967) Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931, SAE Trans. 76. [Google Scholar]
  • Metghalchi M.,Keck J.C. (1982) Burning Velocities of Mixtures of Air with Methanol, iso-octane and indolene at High Pressure and Temperature, Combust. Flame 48, 191-210. [CrossRef] [Google Scholar]
  • Baritaud T., Duclos J.-M., Fusco A. (1996) Modelling turbulent combustion and pollutant formation in stratified charge SI engine, In 26th Symp. Int. On Combustion, The Combustion Institute, pp. 2627-2635. [Google Scholar]
  • Baritaud T. (1989) Combustion and fluid dynamic measurements in a spark ignition engine – effect of thermochemistry and velocity field, turbulent flame speed, SAE Paper 892098. [Google Scholar]
  • Bozza F., Gimelli A., Merola S., Vaglieco B. (2005) Validation of a fractal combustion model through flame imaging, SAE Paper 2005-01-1120. [Google Scholar]
  • Bozza F., Gimelli A. (2004) A comprehensive 1D model for the simulation of a small-size, two-stroke SI engine, SAE Paper 2004-01-0999. [Google Scholar]
  • Boger M., Veynante D., Boughanem H., Trouve A. (1998) DNS Analysis of FSD concept for LES of turbulent premixed combustion, Proceedings of the 27th Symposium (Int.) on Combustion, The Combustion Institute, pp. 917-925. [Google Scholar]
  • Charlette F.,Meneveau C.,Veynante D. (2002) A power law flame wrinkling model for LES of premixed turbulent combustion, Combust. Flame 131, 159-180. [CrossRef] [Google Scholar]
  • Bozza F., Gimelli A., Senatore A., Caraceni A. (2001) A theoretical comparison of various VVA systems for performance and emission improvements of SI engines, SAE Paper 2001-01-0670. [Google Scholar]
  • Le Berr F., Miche M., Le Solliec G., Lafossas F.-A. (2006) Modelling of a turbocharged SI engine with variable camshaft timing for engine control purposes, SAE Paper 2006-01-3264. [Google Scholar]
  • Blint R.J. (1986) The relationship of the laminar flame width to flame speed, Combust. Sci. Technol. 49, 79-92. [CrossRef] [Google Scholar]
  • Poulos S.G., Heywood J.B. (1983) The effect of chamber geometry on spark ignition engine combustion, SAE Paper 830334. [Google Scholar]
  • Meintjes K., Morgan A.P. (1987) General Motors research publications, GMR-5827. [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw-Hill, New York, pp. 450-490. [Google Scholar]
  • Lafossas F.-A., Castagne M., Dumas J.-P., Henriot S. (2002) Development and validation of a knock model in spark ignition engines using a CFD code, SAE Paper 2002-01-2701. [Google Scholar]
  • Bounaceur R., Battin-Leclerc F., Conraud V., Fournet R., Glaude P.-A. (2004) Modélisation de l'oxydation du toluène pur et en mélange avec un alcane, DCPR laboratory, Nancy, France, Research Contract CT 0308/PROG 357/IFP. [Google Scholar]
  • Karim G.A. (2004) A dimensionless criterion for predicting the onset of knock in spark ignition engines, SAE Paper 2004-01-1992. [Google Scholar]
  • Noda T., Hasegawa K., Kubo M., Itoh T. (2004) Development of transient knock prediction technique by using a zero-dimensional knocking simulation with chemical kinetics, SAE Paper 2004-01-0618. [Google Scholar]
  • D'Errico G., Lucchini T., Onorati A., Mehl M., Faravelli T., Ranzi E., Merola S., Vaglieco B.M. (2007) Development and experimental validation of a combustion model with detailed chemistry for knock predictions, SAE Paper 2007-01-0938. [Google Scholar]
  • Teraji A., Tsuda T., Noda T., Kubo M., Itoh T. (2005) Development of a novel flame propagation model (UCFM: Universal coherent flame model) for SI engines and its application to knocking prediction, SAE Paper 04-11-2005. [Google Scholar]
  • Halstead M.P.,Kirsch L.J.,Quinn C.P. (1977) The auto-ignition of hydrocarbon fuels at high temperatures and pressures – fitting of a mathematical model, Combust. Flame 30, 45-60. [CrossRef] [Google Scholar]
  • Ho S.Y., Kuo T.-W. (1997) A hydrocarbon auto-ignition model for knocking combustion in SI engines, SAE Paper 971672. [Google Scholar]
  • Castagne M.,Dumas J.-P.,Henriot S.,Lafossas F.-A. (2003) New knock localization methodology for SI engines, SAE Trans. 112, 3, 1584-1594. [Google Scholar]
  • Albrecht A., Corde G., Knop V., Boie H., Castagne M. (2005) 1D simulation of turbocharged gasoline direct injection engine for transient strategy optimization, SAE Paper 2005-01-0693. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.