Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 213 - 230
DOI https://doi.org/10.2516/ogst:2005013
Publié en ligne 1 décembre 2006
  • Armijo, R., Meyer, B., King, A.,Rigo A. and Papanastassiou, D. (1996) Quaternary Evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11-53. [CrossRef] [Google Scholar]
  • Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, GM.,Tiberi, C.,Berge, C.,Cattin, R.,Hatzfeld, D.,Lachet, C.,Deschamps, A.,Courboulex, F.,Larroque, C.,Rigo, A.,Massonet, D.,Papadimitriou, P.,Kassaras, J.,Diagourtas, D.,Macropoulos, K.,Veis, G.,Papazisi, E.,Mitsakaki, C.,Karakostas, V.,Papadimitriou, E.,Papanastassiou, D.,Chouliaras, G. and Stravakakis, G. (1997) The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift. J. Seismol. 1, 131-150. [CrossRef] [Google Scholar]
  • Bernard, P. (2001) From search of “precursors” to the research on crustal transients’. Tectonophysics, 338, 225-232. [CrossRef] [Google Scholar]
  • Brosse, E., Margueron, T., Cassou, C., Sanjuan, B., Canham, A., Girard, J.P., Lacharpagne, J.C. and Sommer F., (2003) The formation and stability of kaolinite in Brent sandstone reservoirs: a modelling approach. Int Assoc. Sedimentol. Spec. Publ., 34, 383-408. [Google Scholar]
  • Cornet, F.H.,Doan, M.L.,Moretti, I. and Borm, G. (2004) Drilling through the active Aigion Fault : The AIG10 well observatory. Compte rendu Geoscience, 336, 4-5, 395-406. [CrossRef] [Google Scholar]
  • Daniel, JM, Moretti, I., Micarelli, L., Essautier Chuyne, S. and Delle Piane C. (2004) Faulting in prefractured carbonates: macroscopic structural analysis of Ag10 Well (Gulf of Corinth, Greece). CRAS-Structural Geology/Deformation Mechanisms, 336, 4-5, 435-444. [Google Scholar]
  • Dromgoole and Walter (1990) Iron and manganese incorporation into calcite: Effects of precipitation rate, temperature, and solution. Chem.Geol., 81, 311-336. [Google Scholar]
  • Evans, JP. (1992) Greasing the fault. Nature, 358, 544-545. [Google Scholar]
  • Frima, C. (2003) Diagenèse et interaction eau/roche dans les carbonates de la faille d’Aigion, Grèce. Étude du temps de colmatage des fractures par de la calcite. Mémoire IGAL et DOC Public. Rapport IFP 57 575, 173. [Google Scholar]
  • Fritz, B. (1981) Étude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Sciences Géologiques, Mém. n° 65, université Louis-Pasteur de Strasbourg. [Google Scholar]
  • Giurgea, V.,Rettenmaeier, D.,Pizzino, L.,Unkel, I.,Hötzl, H. and Foster, A. (2004) Preliminary, hydrogeological interpretation of the Aigion area from Aig-10 borehole data. Compte rendu Geoscience, 336, 4-5, 467-476. [CrossRef] [Google Scholar]
  • Hutcheon, I. and Abercrombie, H. (1990) Carbon dioxide in clastic rocks and silicate hydrolysis. Geology 18, 541-544. [CrossRef] [Google Scholar]
  • Jaubert, M. (2003) Modélisation hydraulique de la région d’Aigion (Grèce) à l’aide du logiciel TEMIS 3D. Rapport IFP 57677. [Google Scholar]
  • Koukouvelas, I.K.,Doutsos, T. (1996) Implication of structural segmentation during earthquakes: the 1995 Egion earthquake, Gulf of Corinth, Greece. Journal of Structural Geology, 18, 1381-1388. [CrossRef] [Google Scholar]
  • Koukouvelas, I.K.,Stamatopoulos, L.,Katsonopoulou, D. and Pavlides, S. (2001) A paleoseismological and geoarchaeological investigation of the Eliki fault, Gulf of Corinth, Greece. Journal of Structural Geology, 23, 531-543. [CrossRef] [Google Scholar]
  • Lebrón, I. and Suárez, D.L. (1998) Kinetics and mechanisms of precipitation of calcite as affected by pCO2 and organic ligands at 25°C. Geoch. Cosmoch. Acta, 62, 3, 405-416. [CrossRef] [Google Scholar]
  • Lee, Y.J.,Morse, J.W. and Wiltschko, D.V. (1996) An experimentally verified model for calcite precipitation in veins. Chem. Geol., 130, 203-215. [CrossRef] [Google Scholar]
  • Lee, Y.J. and Morse, J.W. (1999) Calcite precipitation in synthetic veins: implications for the time and fluid volume necessary for vein filling. Chem. Geol., 156, 151-170. [CrossRef] [Google Scholar]
  • Le Pourhiet, L., Burov, E., Moretti, I. (2004) Rifting through a stack of inhomogeneous thrusts (study case in the Gulf of Corinth). Tectonics, 23, TC 4005. [Google Scholar]
  • Micarelli, L.,Moretti, I. and Daniel, J.M. (2003) Influence of depth and amount of displacement of the characteristics of normal faults, case study in the Gulf of Corinth - Greece. Journal of Geodynamics, 36, 275-303. [CrossRef] [Google Scholar]
  • Moretti, I., Delhomme, J.P., Cornet, F., Bernard, P., Scmidt-Hattenberger, C. and Borm, G. (2002) The Corinth Rift Laboratory: monitoring of actives faults. First Break, 20, 2. [Google Scholar]
  • Moretti, I.,Sakellariou, D.,Lykousis, V. and Micarelli, L. (2003) The Gulf of Corinth: an active half graben? Journal of Geodynamics, 36, 323-340. [CrossRef] [Google Scholar]
  • Mucci, A. (1986) Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: quantitative influence of orthophosphate ions. Geoch. Cosmoch. Acta, 50, 2255-2265. [CrossRef] [Google Scholar]
  • Mucci, A. and Morse, J.W. (1983) The incorporation of Mg+2 and Sr+2 into calcite overgrowths: influences of growth rate and solution composition. Geochim. Cosmochim. Acta, 47, 217-233. [CrossRef] [Google Scholar]
  • Muir Wood and King, A. (1993) Hydrological signatures of earthquake strain. JGR, 98, 22035-22068. [CrossRef] [Google Scholar]
  • Naville, C., Serbutoviez, S., Moretti, I., Daniel, J.M., Throo, A., Girard, F., Sotiriou, A., Tselentis, A., Skarpzelos, Ch., Brunet Ch. AndCornet, F. (2004) Pre-drill surface seismic in vicinity of AIG-10 well and post-drill VSP. Sismique de surface avant forage du puits AIG-10, et VSP après forage. CRAS-Structural Geology /Deformation mechanism, 336, 4-5, 407-415. [Google Scholar]
  • Nilsson, O. and Sternbeck, J. (1999) A mechanistic model for calcite crystal growth using surface speciation. Geoch. Cosmoch. Acta, 63, 2, 217-225. [CrossRef] [Google Scholar]
  • Ori (1989) Geologic history of the extensional bassin of the Gulf of Corinth (?Miocene-Pleistocene), Greece. Geology, 28, 7, 651-654. [Google Scholar]
  • Pantosti, D., De Martini, P.M., Koukouvelas, I., Stamatopoulos, L., Pavlides, S., Palyvos, N. and Pucci, S. (2002) Paleoseismological trenching across the Eliki and Aigion faults (Gulf of Corinth, Greece). In: EGS XXVII General Assembly, Geophysical Research Abstracts, 4, Nice, France. [Google Scholar]
  • Parkhurst, D.L. and Appelo, C.A.J. (1999) User's guide to PHREEQC (version 2) A computer program for speciation, bathreaction, one-dimensional transport, and inverse geochemical calculation. US Geological Survey, Water-Ressources Investigation Report 99-4259. [Google Scholar]
  • Pizzino, L.,Quattrocchi, F.,Cinti, D. and Galli, G. (2004) Fluid geochemistry along the Eliki and Aigion seismogenic segments (Gulf of Corinth, Greece). Compte rendu Geoscience, 336, 4-5, 367-374. [CrossRef] [Google Scholar]
  • Renard, F.,Gratier, J.P. and Jamtveit, B. (2001) Kinetics of cracksealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology, 22, 1395-1407. [CrossRef] [Google Scholar]
  • Rettenmaier, D.,Giurgea, V. and Foster, A. (2004) The AIG-10 drilling projet (Aigion, Greece): interpretation of the litho-log in the context of regional geology and tectonics. Compte rendu Geoscience, 336, 4-5, 415-424. [CrossRef] [Google Scholar]
  • Rietbrock, A.C.,Tiberi, C.,Scherbaum, F. and Lyon-Caen, H. (1996) Seismic slip on a low angle normal fault in the Gulf of Corinth: evidence from high resolution cluster analysis of microearthquakes. Geophys. Res. Lett., 1, 1817-1820. [CrossRef] [Google Scholar]
  • Rigo, A, Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D. Makioupoulos, K, Papadimitriou, P. and Kassaras I. (1996) A microseismic study of the western part of the Gulf of Corinth (Greece): implications for the large-scale normal faulting mechanisms. Geophys. J. Int., 126, 663-688. [CrossRef] [Google Scholar]
  • Shiraki, R. and Brantley, S.L. (1995) Kinetics of near-equilibrium calcite precipitation at 100°C: an evaluation of elementary reaction-based and affinity-based rate laws. Geoch. Cosmoch. Acta, 59, 8, 1457-1471. [CrossRef] [Google Scholar]
  • Sibson, R. (1992) Implications of fault-valve behaviour for rupture nucleation and reccurence. Tectonophysics, 211, 283-293. [CrossRef] [Google Scholar]
  • Sibson, R. (1994) Crustal stress, faulting and fluid flow. In geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, 78, 69-84. [CrossRef] [Google Scholar]
  • Sorel, D. (2000) A Pleistocene and still-active detachment fault and the origin of the Corinth-Patras rift (Greece). Geology, 28, 1, 83-86. [CrossRef] [Google Scholar]
  • Tenchine, S. (2001) Modélisation hydrogéologique du golfe de Corinthe (document public). Rapport IFP 56 432. [Google Scholar]
  • Westaway, R. (2002) The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower crust. Tectonophysics, 6572. [Google Scholar]
  • Zhong, S. and Mucci, A. (1989) Calcite and aragonite precipitation from seaweter solutions of various salinities: precipitation rates and overgrowth compositions. Chem. Geol., 78, 283-299. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.