Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 57, Numéro 5, September-October 2002
Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Page(s) 443 - 458
DOI https://doi.org/10.2516/ogst:2002029
Publié en ligne 1 décembre 2006
  • Adachi, T., Kimura, M., Nishimura, T., Koya, N. and Kosaka, K. (1997) Trap Door Experiments under Centrifugal Conditions. Proc. Deformation and Progressive Failure in Geomechanics. Nagoya Asoaka et al. (eds.) Pergamon-Elsevier Science, 725-730. [Google Scholar]
  • Atkinson, B.K. (ed.) (1987) Fracture Mechanics of Rock, Academic Press, London. [Google Scholar]
  • Best, M.E. and Katsube, T.J. (1995) Shale Permeability and its Significance in Hydrocarbon Exploration. The Leading Edge, March, 165-170. [Google Scholar]
  • Bj�, P.A. and Nadeau, P.H. (1998) Temperature Controlled Porosity/Permeability Reduction, Fluid Migration and Petroleum Exploration in Sedimentary Basins. APPEA Journal, 38, Part 1, 453-464. [Google Scholar]
  • Borchers, J.W. (ed.) (1998) Land Subsidence Case Studies and Current Research. Association of Engineering Geologist, Special Publication No. 8. Proc. the Dr. Joseph F. Poland Symp. on Land Subsidence, Star Publishing. [Google Scholar]
  • Boutéca, M.J., Fourmaintreaux, D. and Meimon, Y. (1990) In situ Measurement And Numerical Modelling of the Reservoir Compaction and of the Induced Surface Subsidence. Proc. European Oil and Gas Conf., Altavilla Milicia, Palermo, Italy, G. Imarisio et al. (eds.), Graham and Trotman, 260-271. [Google Scholar]
  • Boutéca, M.J.,Sarda, J.P. and Schneider, F. (1996) Subsidence Induced by the Production of Fluids. Revue de l’Institut français du pétrole, 51, 3, 365-379. [Google Scholar]
  • Cook, C.C. and Jewell, S. (1996) Simulation of a North Sea Field Experiencing Significant Compaction Drive. SPE Reservoir Evaluation and Engineering, 48-53. [Google Scholar]
  • Cook, J. (1999) The Effects of Pore Pressure on the Mechanical and Physical Properties of Shales. Oil and Gas Science and Technology, Rev. de l’IFP, Éditions Technip, 54, 6, 695-701. [Google Scholar]
  • Critescu, N.D. and Hunsche, U. (1997) Time Effects in Rock Mechanics, John Wiley and Sons, New York. [Google Scholar]
  • Doornhof, D. (1992). Surface Subsidence in The Netherlands: The Groningen Gas Field. Geologie en Mijnbouw, 71, Kluwer Academic Publishers, 119-130. [Google Scholar]
  • Eiksund, G., Svanø and Nagel, N.B. (1995). Creep related subsidence caused by oil and gas extraction. Proc. 5th Intl. Symp. on Land Subsidence, The Hague, The Netherlands. Barends, F.B.J., Brouwer, F.J.J. and Schröder, F.H. (eds), IAHS Publication. no. 234. 277-285. [Google Scholar]
  • Finol, A.S. and Sancevic, Z.A. (1995) Subsidence in Venezuela. In Subsidence Due to Fluid Withdrawl. Developments in Petroleum Science, Chilingarian G.V., Donaldson E.C., and Yen T.F. (eds.), Elsevier Science, Amsterdam, 41, 337-372. [Google Scholar]
  • Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M. and Risnes, R. (1992) Petroleum Related Rock Mechanics. Developments in Petroleum Science, Elsevier Science, Amsterdam. [Google Scholar]
  • Freeze, R.A. (2000) Social Decision Making and Land Subsidence. Proc. 6th Intl. Symp. on Land Subsidence. In Land Subsidence, Carbognin L., Gambolati G.and Johnson A.I. (eds.), Ravenna, Italy, 353. [Google Scholar]
  • Geertsma, J. (1973) A Basic History of Subsidence Due to Reservoir Compaction: The Homogeneous Case. Verh. Kon. Ned. Geol. Mijnbouwk. Gen., 28. 43-62. [Google Scholar]
  • Geertsma, J. and Van Opstal, G. (1973) A Numerical Technique for Predicting Subsidence Above Compacting Reservoirs, Based on the Nucleus of Strain Concept. Verh. Kon. Ned. Geol. Mijnbouwk. Gen., 28, 63-78. [Google Scholar]
  • Golan, M. and Whitson, C.H. (1996) Well Performance, 2nd edition, Tapir, Norway. [Google Scholar]
  • Hettema, M.H.H. (1996) The Thermo-Mechanical Behaviour of Sedimentary Rock: An Experimental Study. PhD Thesis, Delft University of Technology, ISBN 90-5651-021-5, Eburon P & L, Delft, The Netherlands. [Google Scholar]
  • Hettema, M.H.H.,Schutjens, P.M.T.M.,Verboom, B.J.M. and Gussinklo, J. (2000) Production-Induced Compaction of a Sandstone Reservoir: The Strong Influence of Stress Path. SPE 65410, Reservoir Eval. & Eng. 3, 4, 342-347. [CrossRef] [Google Scholar]
  • Holt, R.M., Brignoli, M., Fjær, E., Unander, T.E. and Kenter, C.J. (1994) Core Damage Effects on Compaction Behaviour. Proc. SPE/ISRM Rock Mechanics in Petroleum Engineering, SPE 28027, Delft, The Netherlands, Balkema, Rotterdam, 55-62. [Google Scholar]
  • Holt, R.M., Brignoli and M.,Kenter, C.J. (2000) Core Quality: Quantification of Coring-Induced Rock Alteration. Int. J. Rock Mech. Min. Sci., 37, 6, 889-908. [CrossRef] [Google Scholar]
  • Horsrud, P.Sønstebø, E.F. and Bøe, R. (1998) Mechanical and Petrophysical Properties of North Sea shales. Int. J. Rock Mech. Min. Sci., 35, 8, 1009-1020. [CrossRef] [Google Scholar]
  • Johnson, J.P.,Rhett, D.W. and Siemers, W.T. (1989) Rock Mechanics of the Ekofisk Reservoir in the Evaluation of Subsidence. J.P.T. July., SPE 17854, 717-722. [Google Scholar]
  • Jones, M. and Mathiesen, E. (1993) Pore Pressure Change and Compaction in North Sea Chalk Hydrocarbon Reservoirs. Int. J. Rock Mech. Min. Sci. & Geom. Abstr,. 30, 1205-1208. [Google Scholar]
  • Layrisse, I. (1999) Heavy Oil Production in Venezuela: Historical Recap and Scenarios for Next Century. SPE Int. Symposium on Oilfield Chemistry, 53464, Houston, 749-761. [Google Scholar]
  • Lehner, F.K. (1995) A Model for Intergranular Pressure Solution in Open Systems. In Influence of Fluids on Deformation Processes in Rocks, Spiers C.J. and Takeshita (eds), Tectonophysics, 245, 153-170. [CrossRef] [Google Scholar]
  • Mathiesen, E. (1996) Rock Mechanics and Chalk: Does Future Modeling of Rock Mechanical Related Phenomena in Chalk Require the Development of Fully Coupled Models? Proc. 5th North Sea Chalk Symposium, Reims, France. [Google Scholar]
  • McLendon, T.H. (1991) Performance Prediction for the M-6 Area of the Tia Juana Field Using a Rate-Dependent Pore Volume Compressibility Model and Extended Material Balance. SPE Ann. Tech. Conf. & Exhib., 22939., Dallas, USA, 553-564. [Google Scholar]
  • Merle, H.A., Kentie, C.J.P., van Opstal, G.H.C.and Schneider, G.M.G. (1976) The Bachaquero Study - A Composite Analysis of the Behavior of a Compaction Drive/Solution Gas Drive Reservoir. SPE JPT, September, 1107-1115. [Google Scholar]
  • Mobach, E. and Gussinklo, H.J., 1994. In situ Reservoir Compaction Monitoring in the Groningen Field. Proc. SPE/ISRM Rock Mechanics in Petroleum Engineerin, Delft, The Netherlands. Balkema, Rotterdam, 535-547. [Google Scholar]
  • Nagel, N.B. (1998) Ekofisk Field Overburden Modelling. Proc. Eurock Rock Mechanics in Petroleum Engineering, SPE/ISRM 47345, 2, Trondheim, Norway ,177-186. [Google Scholar]
  • N� O. and Escojido, D. (1976) Subsidence in the Bolivar Coast. Int. Assoc. Hydrol. Sci. Proc. Annaheim Symp., Publication 121, 257-266. [Google Scholar]
  • Opstal, G.H.C. van (1974) The Effect of Base-Rock Rigidity on Subsidence Due to Reservoir Compaction. Proc. 3rd Congr. of the Int. Soc. of Rock Mech., Denver, II, Part B, 1102-1111. [Google Scholar]
  • Papamichos, E., Vardoulakis and I.,Heill, L.K. (2001) Overburden Modelling Above a Compacting Reservoir Using a Trap Door Apparatus. Phys. Chem. Earth (A), 26, 1-2, 69-74. [CrossRef] [Google Scholar]
  • Pattillo, P.D., Kristiansen, T.G., Sund, G.V. and Kjelstadli, R.M. (1998) Reservoir Compaction and Seafloor Subsidence at Valhall. Proc. Eurock Rock Mechanics in Petroleum Engineering, SPE/ISRM 47274,Trondheim, Norway, 1, 377-386. [Google Scholar]
  • Rolando, J.P., Massonnat, G.J., Grasso, J.R., Odonne, F.and Meftahi, R. (1997) Characterization and Modelling of Increasing Permeability While Producing a Gas Fractured Reservoir. SPE Ann. Tech. Conf. & Exhib., 38711, San Antonio, Texas, 579-589. [Google Scholar]
  • Schutjens, P.M.T.M., Fens, T.W. and Smits, R.M.M. (1995) Experimental Observations of the Uniaxial Compaction of Quartz-Rich Reservoir Rock at Stresses up to 80 MPa. Proc. 5th Int. Symp. on Land Subsidence, The Hague, Netherlands. In Land subsidence, Barends, Brouwer and Schröder (eds.), Balkema, Rotterdam, 389-408. [Google Scholar]
  • Schutjens, P.M.T.M., van Dijk, C., Marcelis, F., Pruno, S., Martin, J.W. and van den Oord, R. (2000) Compaction of a poorly consolidated quartz-rich reservoir sandstone. Experiments for the analysis of compaction drive. Proc. 6th Int. Symp. on Land Subsidence, Ravenna, Italy. In: Carbognin, L., G. Gambolati and A. I. Johnson (eds.), Land Subsidence. 191-213. [Google Scholar]
  • J., de Bree, J.Ph., Coremans, J.W.A. and Helliesen, G. (2001) Compaction-induced porosity/permeability reduction in sandstone reservoirs: Data and models for the elasticitydominated deformation. SPE Ann. Techn. Conf. & Exhib. New Orleans. SPE 71337. [Google Scholar]
  • Sneed, M., Pavelko, M.T. and. Galloway, D.L. (2000). Modeling Residual Aquifer-System Compaction: Constraining the Vertical Hydraulic Diffusivity of Thick Aquifers. Proc. 6th Intl. Symp. on Land Subsidence, Ravenna, Italy. In Land Subsidence, Carbognin L., Gambolati G. and Johnson A.I. (eds.), 343-355. [Google Scholar]
  • Terzaghi, K. (1950). Report on the Effects Of The Terminal Island Subsidence on Long Beach Steam Station of The Southern California Edison Compan, Consulting Report, Winchester (on File in The Terzaghi Library of The Norwegian Geotechnical Institute, Oslo). [Google Scholar]
  • Waal, J.A. de and Smits, R.M.M. (1985). Prediction of Reservoir Compaction and Surface Subsidence: Field Application of a New Model. SPE Ann. Tech. Conf. & Exhib., 14214, Las Vegas [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.