Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 56, Numéro 5, September-October 2001
Page(s) 479 - 498
Publié en ligne 1 décembre 2006
  • Beam, H.W. et Perry, J.J. (1973) Co-Metabolism as a Factor in Microbial Degradation of Cycloparaffinic Hydrocarbons. Arch. Microbiol., 91, 87-90. [PubMed] [Google Scholar]
  • Beam, H.W. et Perry, J.J. (1974a) Microbial Degradation and Assimilation of n-Alkyl-Substituted Cycloparaffins. J. Bacteriol., 118, 394-399. [Google Scholar]
  • Beam, H.W. et Perry, J.J. (1974b) Microbial Degradation of Cycloparaffinic Hydrocarbons via Co-Metabolism and Commensalism. J. Gen. Microbiol., 82, 163-169. [CrossRef] [Google Scholar]
  • Burback, B.L. et Perry, J.J. (1993) Biodegradation and Biotransformation of Groundwater Pollutant Mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol., 59, 1025-1029. [Google Scholar]
  • Catelani, D.,Colombi, A.,Sorlini, C. et Treccani, V. (1977) Metabolism of Quaternary Carbon Compounds: 2,2- Dimethylheptane and Terbutylbenzene. Appl. Environ. Microbiol., 34, 351-354. [PubMed] [Google Scholar]
  • Chang, M.K.,Voice, T.C. et Criddle, C. (1992) Kinetics of Competitive Inhibition and Cometabolism in the Biodegradation of Benzene, Toluene, and p-Xylene by Two Pseudomonas Isolates. Biotechnol. Bioeng., 41, 1057-1065. [CrossRef] [Google Scholar]
  • De Klerk, H. et Van der Linden, A.C. (1974) Bacterial Degradation of Cyclohexane: Participation of a Cooxidation Reaction. Ant. van Leeuw., 40, 7-15. [CrossRef] [Google Scholar]
  • Di Lecce, C.,Accarino, M.,Bolognese, F.,Galli, E. et Barbieri, P. (1997) Isolation and Metabolic Characterization of a Pseudomonas stutzeri Mutant Able to Grow on the Three Isomers of Xylene. Appl. Environ. Microbiol., 63, 3279-3281. [PubMed] [Google Scholar]
  • Durand, J.P.,Béboulène, J.J. et Ducrozet, A. (1995) Detailed Characterization of Petroleum Products with Capillary GC Analyzers. Analusis, 23, 481-483. [Google Scholar]
  • Fall, R.R.,Brown, J.L. et Schaeffer, T.L. (1979) Enzyme Recruitment Allows the Biodegradation of Recalcitrant Branched Hydrocarbons by Pseudomonas citronellolis. Appl. Environ. Microbiol., 38, 715-722. [Google Scholar]
  • Horowitz, A. et Atlas, M. (1977) Response of Microorganisms to an Accidental Gasoline Spillage in an Arctic Freshwater Ecosystem. Appl. Environ. Microbiol., 33, 1252-1258. [PubMed] [Google Scholar]
  • Jamison, V.W.,Raymond, R.L. et Hudson, J.O. (1975) Biodegradation of High-Octane Gasoline in Groundwater. Dev. Ind. Microbiol., 16, 305-312. [Google Scholar]
  • Lang, E. (1996) Diversity of Bacterial Capabilities in Utilizing Alkylated Benzenes and Other Aromatic Compounds. Lett. Appl. Microbiol., 23, 257-260. [CrossRef] [PubMed] [Google Scholar]
  • Leahy, J.G. et Olsen, R.H. (1997) Kinetics of Toluene Degradation by Toluene-Oxidizing Bacteria as a Function of Oxygen Concentration, and the Effect of Nitrate. Microbiol. Ecol., 23, 23-30. [CrossRef] [Google Scholar]
  • Lloyd-Jones, G. et Trudgill, P.W. (1989) The Degradation of Alicyclic Hydrocarbons by a Microbial Consortium. Int. Biodeter., 25, 197-206. [CrossRef] [Google Scholar]
  • Logan, B.E. et Rittmann, B.E. (1998) Finding Solutions for Tough Environmental Problems. Environ. Sci. Technol., 502A- 507A. [Google Scholar]
  • Mallakin, A. et Ward, O.P. (1996) Degradation of BTEX Compounds in Liquid Media and Pet Biofilters. J. Ind. Microbiol., 16, 309-318. [CrossRef] [Google Scholar]
  • Mc Kenna, E.J. (1972) Microbial Metabolism of Normal and Branched Chain Alkanes, in Proc. Degradation of Synthetic Organic Molecules in the Biosphere, San Francisco, 1971, Academy of Sciences, Washington, D.C. [Google Scholar]
  • NF07_086 Détermination des teneurs en familles chimiques d’hydrocarbures dans les essences pour moteur automobile à partir de l’analyse détaillée, Association française de normalisation, Paris La Défense. [Google Scholar]
  • Nielsen, P.H.,Bjerg, P.L.,Nielsen, P.,Smith, P. et Christensen, T.H. (1996) In Situ and Laboratory Determined First-Order Degradation Rate Constants of Specific Organic Compounds in an Aerobic Aquifer. Environ. Sci. Technol., 30, 31-37. [CrossRef] [MathSciNet] [Google Scholar]
  • Nirmalakhandan, N.,Brennan, R.A. et Speece, R.E. (1997) Predicting Henry’s Law Constant and the Effect of Temperature on Henry’s Law Constant. Water Res., 31, 1471-1481. [CrossRef] [Google Scholar]
  • Paje, M.L.F.,Neilan, B.A. et Couperwhite, I. (1997) A Rhodococcus Species that Thrives on Medium Saturated with Liquid Benzene. Microbiology, 143, 2975-2981. [CrossRef] [PubMed] [Google Scholar]
  • Patel, R.N.,Hou, C.T.,Laskin, A.I.,Felix, A. et Derelanko, P. (1983) Oxidation of Alkanes by Organisms Grown on C2-C4 Alkanes. J. Appl. Biochem., 5, 107-120. [Google Scholar]
  • Perry, J.J. (1979) Microbial Cooxidation Involving Hydrocarbons. Microbiol. Rev., 43, 59-72. [PubMed] [Google Scholar]
  • Perry, J.J. (1984) Microbial Metabolism of Cyclic Alkanes, in Petroleum Microbiology, Atlas, R.M. (ed.), Macmillan Publishers, New York, 61-97. [Google Scholar]
  • Pirnik, M.P. (1977) Microbial Oxidation of Methyl Branched Alkanes. CRC Crit. Rev. Microbiol., 5, 413-422. [CrossRef] [PubMed] [Google Scholar]
  • Pirnik, M.P.,Atlas, R.M. et Bartha, R. (1974) Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes. J. Bacteriol., 119, 868-878. [PubMed] [Google Scholar]
  • Ridgway, H.F.,Safarik, J.,Phipps, D.,Carl, P. et Clark, D. (1990) Identification and Catabolic Activity of Well-Derived Gasoline-Degrading Bacteria from a Contaminated Aquifer. Appl. Environ. Microbiol., 56, 3565-3575. [PubMed] [Google Scholar]
  • Rozkov, A.,Käärd, A. et Vilu, R. (1998) Biodegradation of Dissolved Jet Fuel in Chemostat by a Mixed Bacterial Culture Isolated from Heavily Polluted Site. Biodegradation, 8, 363-369. [CrossRef] [Google Scholar]
  • Schaeffer, T.L.,Cantwell, S.G.,Brown, J.L.,Watt, D.S. et Fall, R.R. (1979) Microbial Growth on Hydrocarbons: Terminal Branching Inhibits Biodegradation. Appl. Environ. Microbiol., 38, 742-746. [PubMed] [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Blanchet, D. et Vandecasteele, J.P. (1998) Intrinsic Capacities of Soil Microflorae for Gasoline Degradation. Biodegradation, 9, 319-326. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F., Marchal, R., Lebeault, J.M. et Vandecasteele, J.P. (1999a) Assessment of Intrinsic Capacities of Microflorae for Gasoline Degradation, in Natural Attenuation of Chlorinated Solvents, Petroleum Hydrocarbons, and Other Organic Compounds, Alleman, B.C., Leeson, A. (eds.), Battelle Press, Colombus, Ohio, 177-182. [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Ropars, M.,Lebeault, J.M. et Vandecasteele, J.P. (1999b) Biodegradation of Gasoline: Kinetics, Mass Balance and Fate of Individual Hydrocarbons. J. Appl. Microbiol., 86, 1008-1016. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Casarégola, S.,Vasnier, C.,Lebeault, J.M. et Vandecasteele, J.P. (2000a) A Mycobacterium Strain with Extended Capacities for Degradation of Gasoline Hydrocarbons. Appl. Environ. Microbiol., 66, 2392-2399. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Huet, T.,Lebeault, J.M. et Vandecasteele, J.P. (2000b) Biodegradability of Volatile Hydrocarbons of Gasoline. Appl. Microbiol. Biotechnol., 54, 121-125. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Lebeault, J.M. et Vandecasteele, J.P. (2000c) Distribution in the Environment of Degradative Capacities for Gasoline Attenuation. Biodegradation, 11, 29-35. [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Lebeault, J.M. et Vandecasteele, J.P. (2000d) Selection of Microbial Populations Degrading Recalcitrant Hydrocarbons of Gasoline by Monitoring of Culture- Headspace Composition. Lett. Appl. Microbiol., 30, 19-22. [CrossRef] [PubMed] [Google Scholar]
  • Tay, S.T.H.,Hemond, H.F.,Polz, M.F.,Cavanaugh, C.M.,Dejesus, I. et Krumholtz, L.R. (1998) Two New Mycobacterium Strains and their Role in Toluene Degradation in a Contaminated Stream. Appl. Environ. Microbiol., 64, 1715-1720. [PubMed] [Google Scholar]
  • Thijsse, G.J.E. et Van der Linden, A.C. (1961) Iso-Alkanes Oxidation by a Pseudomonas. Ant. van Leeuw., 27, 171-179. [CrossRef] [MathSciNet] [Google Scholar]
  • Thijsse, G.J.E. et Van der Linden, A.C. (1963) Pathways of Hydrocarbon Dissimilation by a Pseudomonas as Revealed by Chloramphenicol. Ant. van Leeuw., 29, 89-100. [CrossRef] [Google Scholar]
  • Thijsse, G.J.E. et Zwilling-De Vries, J.T. (1959) Oxidation of Straight and Branched Alkanes by Pseudomonas Strains. Ant. van Leeuw., 25, 332-336. [CrossRef] [Google Scholar]
  • Trudgill, P.W. (1984) Microbial Degradation of Alicyclic Ring, in Microbial Degradation of Organic Compounds, Gibson, D.T. (ed.), Marcel Dekker, New York, 131-180. [Google Scholar]
  • Tsao, C.W.,Song, H.G. et Bartha, R. (1998) Metabolism of Benzene, Toluene, and Xylene Hydrocarbons in Soil. Appl. Environ. Microbiol., 64, 4924-4929. [Google Scholar]
  • Vestal, J.B. (1984) The Metabolism of Gaseous Hydrocarbons by Microorganisms, in Petroleum Microbiology, Macmillan Publishers, Atlas, R.M. (ed.), New York, 129-152. [Google Scholar]
  • Watkinson, R.J. et Morgan, P. (1990) Physiology of Aliphatic Hydrocarbon-Degrading Microorganims. Biodegradation, 1, 79-92. [CrossRef] [PubMed] [Google Scholar]
  • Woods, N.R. et Murrel, J.C. (1989) The Metabolism of Propane in Rhodococcus rhodochrous PNKb1. J. Gen. Microbiol., 135, 2335-2344. [Google Scholar]
  • Wright, W.F.,Schroeder, E.D.,Chang, D.P.Y. et Romstad, K. (1997) Performance of a Pilot-Scale Compost Biofilter Treating Gasoline. J. Environ. Eng., 123, 547-555. [CrossRef] [Google Scholar]
  • Yaws, C.L. (1992) Thermodynamic and Physical Property Data, Gulf Publishing Company, Houston, Texas. [Google Scholar]
  • Yerushalmi, L. et Guiot, S.R. (1998) Kinetics of Biodegradation of Gasoline and its Hydrocarbon Constituents. Appl. Microbiol. Biotechnol., 49, 475-481. [CrossRef] [PubMed] [Google Scholar]
  • Zhou, E. et Crawford, R.L. (1995) Effects of Oxygen, Nitrogen and Temperature on Gasoline Biodegradation in Soil. Biodegradation, 6, 127-140. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.