Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Numéro 4, July-August 2000
Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Page(s) 417 - 425
DOI https://doi.org/10.2516/ogst:2000030
Publié en ligne 1 octobre 2006
  • Al-Dahhan, M.H. and Dudukovic, M.P. (1994) Pressure Drop and Liquid Holdup in High Pressure Trickle Bed Reactors. Chem. Eng. Sci., 49, 5681-5698. [CrossRef] [Google Scholar]
  • Al-Dahhan, M.H.,Khadilkar, M.R.,Wu, Y. and Dudukovic, M.P. (1998) Prediction of Pressure Drop and Liquid Holdup in High- Pressure Trickle-Bed Reactors. Ind. Eng. Chem. Res., 37, 793-798. [CrossRef] [Google Scholar]
  • Al-Dahhan, M.H.,Larachi, F.,Dudukovic, M.P. and Laurent, A. (1997) High-Pressure Trickle Bed Reactors: A Review. Ind. Eng. Chem. Res., 36, 3292-3314. [CrossRef] [Google Scholar]
  • Anderson, D.H. and Sapre, A.V. (1991) Trickle Bed Reactor Flow Simulation. AIChE J., 37, 377-382. [CrossRef] [Google Scholar]
  • Attou, A. and Boyer, C. (1999) Revue des aspects hydrodynamiques des réacteurs catalytiques gaz-liquide-solide à lit fixe arrosé. Oil & Gas Science and Technology - Revue de l’IFP, 54, 1, 29-66. [CrossRef] [EDP Sciences] [Google Scholar]
  • Attou, A.,Boyer, C. and Ferschneider, G. (1999) Modelling of the Hydrodynamics of the Cocurent Gas-Liquid Trickle Flow through a Trickle-Bed Reactor. Chem. Eng. Sci., 54, 785-802. [CrossRef] [Google Scholar]
  • Attou, A. and Ferschneider, G. (1999) A Two-Fluid Model for Flow Regime Transition in Gas-Liquid Trickle Bed Reactors. Chem. Eng. Sci., 54, 5031-5037. [CrossRef] [Google Scholar]
  • Biardi, G. and Baldi, G. (1999) Three-Phase Catalytic Reactors. Catalysis Today, 52, 223-234. [CrossRef] [Google Scholar]
  • Carbonell, R.G. and Whitaker, S. (1982) Heat and Mass Transport in Porous Media, in Proc. of the Symposium on Mechanics of Fluids in Porous Media, NATO Advanced Study Inst., Univ. of Delaware. [Google Scholar]
  • Chou, T.S., Worley, F.L. and Luss, Jr., D. (1977) Transition to Pulsed Flow in Mixed-Phase Cocurrent Downflow through a Packed Bed. Ind. Eng. Chem. Process Des. Dev., 16, 424-427. [Google Scholar]
  • Dankworth, D.C. and Sundaresan, S. (1989) A Macroscopic Model for Countercurrent Gas-Liquid Flow in Packed Columns. AIChE J., 35, 1282-1292. [CrossRef] [Google Scholar]
  • Dankworth, D.C.,Kvrekidis, I.G. and Sundaresan, S. (1990) Dynamics of Pulsing Flow in Trickle Beds. AIChE J., 36, 605-621. [CrossRef] [Google Scholar]
  • Ellman, M.J.,Midoux, N.,Laurent, A. and Charpentier, J.C. (1988) A New, Improved Pressure Drop Correlation for Trickle Bed Reactors. Chem. Eng. Sci., 43, 2201-2206. [CrossRef] [Google Scholar]
  • Ellman, M.J.,Midoux, N.,Wild, G.,Laurent, A. and Charpentier, J.C. (1990) A New, Improved Liquid Holdup Correlation for Trickle-Bed Reactors. Chem. Eng. Sci., 45, 1667-1684. [CrossRef] [Google Scholar]
  • Ergun, S. (1952) Fluid Flow through Packed Columns. Chem. Eng. Prog., 48, 89-94. [Google Scholar]
  • Gianetto, A. and Specchia, V. (1992) Trickle Bed Reactors: State of Art and Perspectives. Chem. Eng. Sci., 47, 3197-3213. [Google Scholar]
  • Gianetto, A., Baldi, G.,Specchia V. and Sicardi, S. (1978) Hydrodynamics and Solid-Liquid Contacting Effectiveness in Trickle-Bed Reactors. AIChE J., 24, 1087-1104. [CrossRef] [Google Scholar]
  • Grosser, K.,Carbonell, R.G. and Sundaresan, S. (1988) Onset of Pulsing in Two-Phase Cocurrent Downflow through a Packed Bed. AIChE J., 34, 1850-1860. [CrossRef] [Google Scholar]
  • Holub, R.A.,Dudukovic, M.P. and Ramachandran, P.A. (1992) A Phenomenological Model for Pressure Drop, Liquid Holdup, and Flow Regime Transition in Gas-Liquid Trickle Flow. Chem. Eng. Sci., 47, 2343-2348. [CrossRef] [Google Scholar]
  • Holub, R.A.,Dudukovic, M.P. and Ramachandran, P.A. (1993) Pressure Drop, Liquid Holdup, and Flow Regime Transition in Trickle Flow. AIChE J., 39, 302-321. [CrossRef] [Google Scholar]
  • Hutton, B.E.T. and Leung, L.S. (1974) Cocurrent Gas-Liquid Flow in Packed Columns. Chem. Eng. Sci., 29, 1681-1685. [CrossRef] [Google Scholar]
  • Iliuta, I. and Larachi, F. (1999) The Generalized Slit Model: Pressure Gradient, Liquid Holdup and Wetting Efficiency in Gas- Liquid Trickle Flow. Chem. Eng. Sci., 54, 5039-5045. [CrossRef] [Google Scholar]
  • Kan, K.M. and Greenfield, P.F. (1978) Multiple Hydrodynamic States in Cocurrent Two-Phase Down-Flow through Packed Beds. Ind. Eng. Chem. Process. Des. Dev., 17, 482-485. [CrossRef] [MathSciNet] [Google Scholar]
  • Kramer, G.J. (1998) Static Liquid Hold-up and Capillary Rise in Packed Beds. Chem. Eng. Sci., 53, 2985-2992. [CrossRef] [Google Scholar]
  • Lakota, A. (1991) Hydrodynamics and Mass Transfer Characteristics in Trickle Bed Reactor. PhD Thesis, University of Ljubljana, Slovenia. [Google Scholar]
  • Lakota, A. and Levec, J. (1999) On the Hydrodynamic Parameter of Trickling Flow in Packed Beds: The Relative Permeability Concept. To be submitted to AIChE J. [Google Scholar]
  • Larachi, F.,Laurent, A.,Midoux, N. and Wild, G. (1991a) Experimental Study of Trickle Bed Reactor Operating at High Pressure: Two-Phase Pressure Drop and Liquid Saturation. Chem. Eng. Sci., 46, 1233-1246. [CrossRef] [Google Scholar]
  • Larachi, F.,Laurent, A.,Wild, G. and Midoux, N. (1991b) Some Experimental Liquid Saturation Results in Fixed Bed Reactors Operated at Elevated Pressure in Cocurrent Upflow and Downflow of the Gas and the Liquid. Ind. Eng. Chem. Res., 30, 2404-2410. [CrossRef] [Google Scholar]
  • Larachi, F., Iliuta, I., Al-Dahhan, M.A. and Dudukovic, M.P. (1999a) Discriminating Trickle-Flow Hydrodynamic Models: Some Recommendations. Ind. Eng. Chem. Res., in press. [Google Scholar]
  • Larachi, F.,Iliuta, I.,Chen, M. and Grandjean, B.P.A. (1999b) Onset of Pulsing in Trickle Beds: Evaluation of Current Tools and State-of-the-Art Correlation. Canadian J. of Chem. Eng., 77, 751-758. [CrossRef] [Google Scholar]
  • Levec, J., Sऺ, A.E. and Carbonell, R.G. (1986) The Hydrodynamics of Trickling Flow in Packed Beds. Part II: Experimental Observations. AIChE J., 32, 369-380. [CrossRef] [Google Scholar]
  • Levec, J.,Grosser, K. and Carbonell, R.G. (1988) The Hysteretic Behavior of Pressure Drop and Liquid Holdup in Trickle Beds. AIChE J., 34, 1027-1030. [CrossRef] [Google Scholar]
  • Leverett, M.C. (1941) Capillary Behavior in Porous Solids. AIME Trans., 142, 152-169. [CrossRef] [Google Scholar]
  • Mao, Z.S.,Xiong, T.Y. and Chen, J. (1993) Theoretical Prediction of Static Liquid Holdup in Trickle Bed Reactors and Comparison with Experimental Results. Chem. Eng. Sci., 48, 2697-2703. [CrossRef] [Google Scholar]
  • Ng, K.M. (1986) A Model for Flow Regime Transitions in Cocurrent Down-Flow Trickle-Bed Reactors. AIChE J., 32, 115-122. [CrossRef] [Google Scholar]
  • Rao, V.G. and Drinkenberg, A.H. (1983) Pressure Drop and Hydrodynamic Properties of Pulses in Two Phase Gas Liquid Downflow through Packed Columns. Can. Chem. Eng. J., 62, 158-167. [CrossRef] [Google Scholar]
  • Sáez, A.E. (1984) Hydrodynamics and Lateral Thermal Dispersion for Gas-Liquid Cocurrent Flow in Packed Beds. PhD Thesis, University of California, Davis. [Google Scholar]
  • Sáez, A.E. and Carbonell, R.G. (1985) Hydrodynamic Parameters for Gas-Liquid Cocurrent Flow in Packed Beds. AIChE J., 31, 52-62. [CrossRef] [MathSciNet] [Google Scholar]
  • Sáez, A.E.,Carbonell, R.G. and Levec, J. (1986) The Hydrodynamics of Trickling Flow in Packed Beds. Part I: Conduit Models. AIChE J., 32, 353-368. [CrossRef] [Google Scholar]
  • Sáez, A.E.,Yépez, M.M.,Cabrera, C. and Soria, E.M. (1991) Static Liquid Holdup in Packed Beds of Spherical Particles. AIChE J., 37, 1733-1736. [CrossRef] [Google Scholar]
  • Sapre, A.V. and Katzer, J.R. (1995) Core of Chemical Reaction Engineering: One Industrial View. AIChE J., 34, 2202-2225. [Google Scholar]
  • Scheidegger, A. (1974) The Physics of Flow in Porous Media, 3rd ed., Univ. of Toronto Press, 56 ff. [Google Scholar]
  • Sherwood, T.K. and Shipley, H. (1938) Flooding Velocities in Packed Columns. Ind. Eng. Chem., 30, 765-769. [CrossRef] [Google Scholar]
  • Tsochatzidis, N.A. and Karabelas, A.J. (1994) Experiments in Trickle Beds at the Micro- and Macroscale. Flow Characterization and Onset of Pulsing. AIChE J., 33, 1299-1309. [Google Scholar]
  • Wammes, W.J.A.,Mechielsen, S.J. and Westerterp, K.R. (1991a) The Influence of Pressure on the Liquid Holdup in a Cocurrent Gas-Liquid Trickle-Bed Reactor Operating at Low Gas Velocities. Chem. Eng. Sci., 46, 409-417. [CrossRef] [Google Scholar]
  • Wammes, W.J.A., Middelkamp, J., Huisman, W.J., deBaas, C.M. and Westerterp, K.R. (1991b) Hydrodynamics in a Cocurrent Gas-Liquid Trickle Bed at High Pressure. AIChE J., 37, 1849-1862. [CrossRef] [Google Scholar]
  • Wammes, W.J.A. and Westerterp, K.R. (1991c) Hydrodynamics in a Pressurized Cocurrent Gas-Liquid Trickle Bed Reactor. Chem. Eng. Tech., 14, 406-413. [CrossRef] [Google Scholar]
  • Wang, R.,Mao, Z.S. and Chen, J. (1995) Experimental and Theoretical Studies of Pressure Drop Hysteresis in Trickle Bed Reactors. Chem. Eng. Sci., 50, 2321-2328. [CrossRef] [Google Scholar]
  • Wang, R.,Mao, Z.S.,Chen, L. and Chen, J.Y. (1998) Experimental Evidence of Hysteresis of Pressure Drop for Countercurrent Gas-Liquid Flow in a Fixed Bed. Chem. Eng. Sci., 53, 367-369. [CrossRef] [Google Scholar]
  • Whitaker, S. (1969) Advances in the Theory of Fluid Motion in Porous Media. Ind. Eng. Chem., 61, 12, 14-28. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.