Regular Article
Simulation and parametric analysis of natural gas sweetening process: a case study of Missan Oil Field in Iraq
Department of Chemical Engineering, Faculty of Technology and Engineering, University of Mazandaran, Babolsar, P.O. Box 416, Iran
* Corresponding author: e.omidbakhsh@umz.ac.ir
Received:
2
February
2021
Accepted:
2
June
2021
Gas sweetening is one of the important purification processes which is employed to remove acidic contaminants from natural gases prior to meet transport requirements and sale gas specifications. In this work, simulation and parametric studies of the natural gas processing plant of Missan Oil Company/Buzurgan Oil Field of Natural Gas Processing Plant (in Iraq) were considered. After simulation and validation of this plant, the effect of feed temperature and flow rate and solvent concentration were considered. Results show with increasing the feed temperature and flow rate, the amount of H2S and CO2 in the sweet gas stream increases. Then, in the next step, the effect of mixture solvents was studied. Sulfolane–MDEA and MDEA–MEA were selected as a physical–chemical mixture solvent and chemical mixture solvent, respectively. The simulation results show that the solvent price and reboiler duty and cooling duty can be reduced by using a mixture solvent. However, the amount of H2S and CO2 in the sweet gas can be affected by these solvents. The system by a chemical mixture solvent can better performance than other solvents.
© J.M. Khanjar & E. Omidbakhsh Amiri, published by IFP Energies nouvelles, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.