Regular Article
Characteristics of transient pressure performance of horizontal wells in fractured-vuggy tight fractal reservoirs considering nonlinear seepage
1
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
2
The Pennsylvania State University, University Park, PA 16802, USA
* Corresponding authors: 1215797855@qq.com; 986012825@qq.com
Received:
22
January
2019
Accepted:
10
April
2019
Since the classical seepage theory has limitations in characterizing the heterogeneity of fractured-vuggy tight reservoirs, well test interpretation results are not consistent with actual production by far. Based on the nonlinear percolation theory, a new nonlinear seepage equation considering the boundary layer and yield stress was derived to describe the seepage characteristics of dense matrix blocks and the stress sensitivity and fractal features of fracture systems were characterized by applying the fractal theory. Thus, the nonlinear model of a horizontal well in a fractured-vuggy tight fractal reservoir was established naturally. Then the finite element method was applied to solve the bottom hole pressure based on the processing of internal boundary conditions. After solving the model, the seepage characteristics of different models were summarized by analyzing the bottom hole pressure dynamic curves and the sensitivity analysis of multiple parameters such the nonlinear parameter and fractal index were conducted. Finally, the practicality of the model was proved through a field application. The results show that the pressure dynamic curves can be divided into nine flow stages and the increase of the nonlinear parameter will cause the intensity of the cross flow from matrix blocks to the fracture system to decrease. The fractal index is irrelevant to the intensity of the cross flow while it decides the upwarping degree of the curve at the middle and late flow stages. On the basis of the results of the field application, it can be concluded that the model fits well with actual production and the application of this model can improve the accuracy of well test interpretation.
© R. Jiang et al., published by IFP Energies nouvelles, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.