Open Access
Erratum
This article is an erratum for:
[https://doi.org/10.2516/ogst/2018004]


Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 81
Number of page(s) 1
DOI https://doi.org/10.2516/ogst/2018068
Published online 18 December 2018

Some errors occurred in the online version of paper OGST170196, one should read:

Equation 12:

Correct form:τ=0s|u(δ)|$$ \tau ={\int }_0^s\frac{\varnothing }{\left|\vec{u}(\delta )\right|}{d\delta } $$(12)

Instead of wrong form:τ=0sφ|u(δ)|,$$ \tau ={\int }_0^s\frac{\phi }{\overrightarrow{|u}}(\delta )|{d\delta }, $$(12)

Equation 20:

Correct form:(Swf)in+1= (Swf)iint-Tinϕftsl$$ {\left({S}_{{wf}}\right)}_i^{n+1}=\enspace {\left({S}_{{wf}}\right)}_i^{{int}}-\frac{{T}_i^n}{{\phi }_f}\Delta {t}_{{sl}} $$(20)

Instead of wrong form:(Swf)iint= (Swf)iint-Tinϕftsl,$$ {\left({S}_{{wf}}\right)}_i^{{int}}=\enspace {\left({S}_{{wf}}\right)}_i^{{int}}-\frac{{T}_i^n}{{\phi }_f}\Delta {t}_{{sl}}, $$(20)

Equation 22:

Correct form:(Swf)iint=(Swf)in-ΔtslΔτ(fwf(Swf,in)-fwf(Swf,i-1n))$$ {\left({S}_{{wf}}\right)}_i^{{int}}={\left({S}_{{wf}}\right)}_i^n-\frac{\mathbf{\Delta }{{t}}_{{sl}}}{\mathbf{\Delta }{\tau }}\left({f}_{{wf}}\left({S}_{{wf},i}^n\right)-{f}_{{wf}}\left({S}_{{wf},i-1}^n\right)\right) $$(22)

Instead of wrong form:(Swf)iint=(Swf)in-ΔtslΔT(fwf(Swf,in)-fwf(Swf,i-1n))$$ {\left({S}_{{wf}}\right)}_i^{{int}}={\left({S}_{{wf}}\right)}_i^{n-\frac{\Delta {tsl}}{\Delta T}}\left({f}_{{wf}}\left({S}_{{wf},i}^n\right)-{f}_{{wf}}\left({S}_{{wf},i-1}^n\right)\right) $$(22)


© MM. MesbahMesbah et al., published by IFP Energies nouvelles, 2018

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.