The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Review of the Interfacial Structure and Properties of Surfactants in Petroleum Production and Geological Storage Systems from a Molecular Scale Perspective
Jihui Jia, Shu Yang, Jingwei Li, Yunfeng Liang, Rongjuan Li, Takeshi Tsuji, Ben Niu and Bo Peng Molecules 29(13) 3230 (2024) https://doi.org/10.3390/molecules29133230
Foaming behavior of sugar-based surfactants: influence of molecular structure and anticipation from surface properties
Effects of interfacial molar ratios of anionic/cationic surfactant mixtures on properties at the gas-liquid interface: a molecular dynamics study
Linghong Cai, Zhidong Chang, Hui Dang, Sihang Ma, Wenjun Liu, Mahamat Abderamane Hassane and Daixiang Wei Journal of Dispersion Science and Technology 44(11) 2023 (2023) https://doi.org/10.1080/01932691.2022.2056481
Current Practices and Continuing Needs in Thermophysical Properties for the Chemical Industry
Sumnesh Gupta, J. Richard Elliott, Andrzej Anderko, et al. Industrial & Engineering Chemistry Research 62(8) 3394 (2023) https://doi.org/10.1021/acs.iecr.2c03153
Vai Yee Hon, Nor Hadhirah Bt Halim, Sai Ravindra Panuganti, Ivy Ching Hsia Chai and Ismail B M Saaid (2022) https://doi.org/10.4043/31441-MS
Interdisciplinary Overview of Lipopeptide and Protein-Containing Biosurfactants
Régis Antonioli Júnior, Joice de Faria Poloni, Éderson Sales Moreira Pinto and Márcio Dorn Genes 14(1) 76 (2022) https://doi.org/10.3390/genes14010076
Surfactants and Detergents - Updates and New Insights
Machine learning hybrid approach for the prediction of surface tension profiles of hydrocarbon surfactants in aqueous solution
Dale Seddon, Erich A. Müller and João T. Cabral Journal of Colloid and Interface Science 625 328 (2022) https://doi.org/10.1016/j.jcis.2022.06.034
Hon Vai Yee, Estelle Deguillard, Ismail Mohd Saaid, Ivy Chin Hsia, Noor Amira Mohd Fauzi, Jan Van Male and Jan-Willem Handgraaf (2022) https://doi.org/10.2118/211235-MS
Prediction of Micellar Thermodynamics of Nonionic Surfactants Based on the Square Gradient Theory
Novel green surfactant made from L-aspartic acid as enhancer of oil production from sandstone reservoirs: Wettability, IFT, microfluidic, and core flooding assessments
Masoud Deljooei, Ghasem Zargar, Vahid Nooripoor, Mohammad Ali Takassi and Ali Esfandiarian Journal of Molecular Liquids 323 115037 (2021) https://doi.org/10.1016/j.molliq.2020.115037
Self-assembly, interfacial properties, interactions with macromolecules and molecular modelling and simulation of microbial bio-based amphiphiles (biosurfactants). A tutorial review
Equivalent alkane carbon number of crude oils: A predictive model based on machine learning
Benoit Creton, Isabelle Lévêque and Fanny Oukhemanou Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 30 (2019) https://doi.org/10.2516/ogst/2019002
Simulations of Interfacial Tension of Liquid–Liquid Ternary Mixtures Using Optimized Parametrization for Coarse-Grained Models
David Steinmetz, Benoit Creton, Véronique Lachet, Bernard Rousseau and Carlos Nieto-Draghi Journal of Chemical Theory and Computation 14(8) 4438 (2018) https://doi.org/10.1021/acs.jctc.8b00357
The spherical droplet model extended: The relation between surfactant packing and aggregate composition
Non-ionic surfactant phase diagram prediction by recursive partitioning
Gordon Bell Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2072) 20150137 (2016) https://doi.org/10.1098/rsta.2015.0137
Numerical simulations of the effect of ionic surfactant/polymer on oil–water interface using dissipative particle dynamics
Shuyan Wang, Shanwen Yang, Xu Wang, Yang Liu, Shuren Yang and Qun Dong Asia-Pacific Journal of Chemical Engineering 11(4) 581 (2016) https://doi.org/10.1002/apj.1982
New QSPR Models to Predict the Critical Micelle Concentration of Sugar-Based Surfactants
Théophile Gaudin, Patricia Rotureau, Isabelle Pezron and Guillaume Fayet Industrial & Engineering Chemistry Research 55(45) 11716 (2016) https://doi.org/10.1021/acs.iecr.6b02890
Equivalent Alkane Carbon Number of Live Crude Oil: A Predictive Model Based on Thermodynamics
Benoit Creton and Pascal Mougin Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 71(5) 62 (2016) https://doi.org/10.2516/ogst/2016017
Modelling the interfacial behaviour of dilute light-switching surfactant solutions
Carmelo Herdes, Erik E. Santiso, Craig James, Julian Eastoe and Erich A. Müller Journal of Colloid and Interface Science 445 16 (2015) https://doi.org/10.1016/j.jcis.2014.12.040
Prediction of Optimal Salinities for Surfactant Formulations Using a Quantitative Structure–Property Relationships Approach
First-Principles Prediction of Liquid/Liquid Interfacial Tension
M. P. Andersson, M. V. Bennetzen, A. Klamt and S. L. S Stipp Journal of Chemical Theory and Computation 10(8) 3401 (2014) https://doi.org/10.1021/ct500266z
Electronic Structure and Mesoscopic Simulations of Nonylphenol Ethoxylate Surfactants. A Combined DFT and DPD Study