Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Effects of co-feeding with nitrogen-containing compounds on the performance of supported cobalt and iron catalysts in Fischer–Tropsch synthesis

Vitaly V. Ordomsky, Alexandre Carvalho, Benoit Legras, et al.
Catalysis Today 275 84 (2016)
https://doi.org/10.1016/j.cattod.2015.12.015

Micro‐syngas technology options for GtL

Cristian Trevisanut, Seyed M. Jazayeri, Said Bonkane, Cristian Neagoe, Ali Mohamadalizadeh, Daria C. Boffito, Claudia L. Bianchi, Carlo Pirola, Carlo Giorgio Visconti, Luca Lietti, Nicolas Abatzoglou, Lyman Frost, Jan Lerou, William Green and Gregory S. Patience
The Canadian Journal of Chemical Engineering 94 (4) 613 (2016)
https://doi.org/10.1002/cjce.22433

Effect of Pretreatment on Physicochemical Properties and Performance of Multiwalled Carbon Nanotube Supported Cobalt Catalyst for Fischer–Tropsch Synthesis

Vahid Vosoughi, Sandeep Badoga, Ajay K. Dalai and Nicolas Abatzoglou
Industrial & Engineering Chemistry Research 55 (21) 6049 (2016)
https://doi.org/10.1021/acs.iecr.5b04381

Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of gold as a promoter for cobalt–alumina catalysts

Doreen Nabaho, J.W. (Hans) Niemantsverdriet, Michael Claeys and Eric van Steen
Catalysis Today 275 27 (2016)
https://doi.org/10.1016/j.cattod.2015.12.019

Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

Erling Rytter and Anders Holmen
Catalysts 5 (2) 478 (2015)
https://doi.org/10.3390/catal5020478

The effects of oxidation–reduction treatment on the structure and activity of cobalt-based catalysts

Liangguang Tang, Doki Yamaguchi, Ben Leita, Valerie Sage, Nick Burke and Ken Chiang
Catalysis Communications 59 166 (2015)
https://doi.org/10.1016/j.catcom.2014.10.021

Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer–Tropsch catalysts

Thomas O. Eschemann, Wouter S. Lamme, Rene L. Manchester, et al.
Journal of Catalysis 328 130 (2015)
https://doi.org/10.1016/j.jcat.2014.12.010

An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer–Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation

Gregory R. Johnson, Sebastian Werner and Alexis T. Bell
ACS Catalysis 5 (10) 5888 (2015)
https://doi.org/10.1021/acscatal.5b01578

Development of an Innovative XRD-DRIFTS Prototype AllowingOperandoCharacterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

Julien Scalbert, Isabelle Clémençon, Christèle Legens, et al.
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70 (3) 419 (2015)
https://doi.org/10.2516/ogst/2014031

Simultaneous investigation of the structure and surface of a Co/alumina catalyst during Fischer–Tropsch synthesis: discrimination of various phenomena with beneficial or disadvantageous impact on activity

Julien Scalbert, Isabelle Clémençon, Philippe Lecour, et al.
Catalysis Science & Technology 5 (8) 4193 (2015)
https://doi.org/10.1039/C5CY00556F

Fischer–Tropsch synthesis on cobalt-based catalysts with different thermally conductive additives

E. Asalieva, K. Gryaznov, E. Kulchakovskaya, et al.
Applied Catalysis A: General 505 260 (2015)
https://doi.org/10.1016/j.apcata.2015.08.006

Stability of Carbon on Cobalt Surfaces in Fischer–Tropsch Reaction Conditions: A DFT Study

Manuel Corral Valero and Pascal Raybaud
The Journal of Physical Chemistry C 118 (39) 22479 (2014)
https://doi.org/10.1021/jp5004177

Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer–Tropsch synthesis

S. K. Beaumont
Phys. Chem. Chem. Phys. 16 (11) 5034 (2014)
https://doi.org/10.1039/C3CP55030C

Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer–Tropsch synthesis

S. K. Beaumont
Phys. Chem. Chem. Phys. 16 (11) 5034 (2014)
https://doi.org/10.1039/c3cp55030c

Ru promoted cobalt catalyst on γ-Al2O3: Influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics

Mohammad Javad Parnian, Ali Taheri Najafabadi, Yadollah Mortazavi, Abbas Ali Khodadadi and Idin Nazzari
Applied Surface Science 313 183 (2014)
https://doi.org/10.1016/j.apsusc.2014.05.183

Preferential chemical vapor deposition of ruthenium on cobalt with highly enhanced activity and selectivity for Fischer–Tropsch synthesis

Mohammad Javad Parnian, Abbas Ali Khodadadi, Ali Taheri Najafabadi and Yadollah Mortazavi
Applied Catalysis A: General 470 221 (2014)
https://doi.org/10.1016/j.apcata.2013.11.004

Interplay of interfacial compounds, catalyst thickness and carbon precursor supply in the selectivity of single-walled carbon nanotube growth

Hugo Navas, Benji Maruyama, Kent Weaver, et al.
Carbon 80 599 (2014)
https://doi.org/10.1016/j.carbon.2014.09.003

Combining in Situ NEXAFS Spectroscopy and CO2 Methanation Kinetics To Study Pt and Co Nanoparticle Catalysts Reveals Key Insights into the Role of Platinum in Promoted Cobalt Catalysis

Simon K. Beaumont, Selim Alayoglu, Colin Specht, et al.
Journal of the American Chemical Society 136 (28) 9898 (2014)
https://doi.org/10.1021/ja505286j

Insights into the Catalytic Performance of Mesoporous H‐ZSM‐5‐Supported Cobalt in Fischer–Tropsch Synthesis

Sina Sartipi, Margje Alberts, Vera P. Santos, Maxim Nasalevich, Jorge Gascon and Freek Kapteijn
ChemCatChem 6 (1) 142 (2014)
https://doi.org/10.1002/cctc.201300635

Preparation and characterization of Pt-modified Co-based catalysts through the microemulsion technique: Preliminary results on the Fischer–Tropsch synthesis

V. Montes, M. Boutonnet, S. Järås, et al.
Catalysis Today 223 66 (2014)
https://doi.org/10.1016/j.cattod.2013.11.053

Fuel Production with Heterogeneous Catalysis

Cristina Paun, Jacinto Sá and Kalala Jalama
Fuel Production with Heterogeneous Catalysis 147 (2014)
https://doi.org/10.1201/b17552-6

EXAFS Peaks and TPR Characterizing Bimetallic Interactions: Effects of Impregnation Methods on the Structure of Pt-Ru/C Catalysts

Nan-Yu Chen, Ming-Chun Liu, Shih-Chieh Yang and Jen-Ray Chang
Journal of Spectroscopy 2014 1 (2014)
https://doi.org/10.1155/2014/347078

High Pressure CO Hydrogenation Over Bimetallic Pt–Co Catalysts

Jakob M. Christensen, Andrew J. Medford, Felix Studt and Anker D. Jensen
Catalysis Letters 144 (5) 777 (2014)
https://doi.org/10.1007/s10562-014-1220-x

Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction–sulfidation processes and Fischer–Tropsch catalysis

Dagoberto O. Silva, Leandro Luza, Aitor Gual, et al.
Nanoscale 6 (15) 9085 (2014)
https://doi.org/10.1039/C4NR02018A

Fischer–Tropsch Synthesis: Higher Oxygenate Selectivity of Cobalt Catalysts Supported on Hydrothermal Carbons

Uschi M. Graham, Gary Jacobs, Muthu K. Gnanamani, et al.
ACS Catalysis 4 (6) 1662 (2014)
https://doi.org/10.1021/cs400965t

Effect of Pt and Ru promoters on deactivation of Co catalysts by C deposition during Fischer–Tropsch synthesis: A DFT study

Nianthrini Balakrishnan, Babu Joseph and Venkat R. Bhethanabotla
Applied Catalysis A: General 462-463 107 (2013)
https://doi.org/10.1016/j.apcata.2013.05.001

Palladium-promoted cobalt catalysts supported on silica prepared by impregnation and reverse micelle for Fischer–Tropsch synthesis

Nattawut Osakoo, Robert Henkel, Sirinuch Loiha, Frank Roessner and Jatuporn Wittayakun
Applied Catalysis A: General 464-465 269 (2013)
https://doi.org/10.1016/j.apcata.2013.06.008

Titania-Decorated Silicon Carbide-Containing Cobalt Catalyst for Fischer–Tropsch Synthesis

Yuefeng Liu, Benoit de Tymowski, Fabrice Vigneron, et al.
ACS Catalysis 3 (3) 393 (2013)
https://doi.org/10.1021/cs300729p

Alumina-promoted cobalt and iron xerogels as catalyst for the Fischer–Tropsch synthesis

M. Minnermann, B. Neumann, V. Zielasek and M. Bäumer
Catalysis Science & Technology 3 (12) 3256 (2013)
https://doi.org/10.1039/c3cy00483j

A zirconium modified Co/SiO2 Fischer-Tropsch catalyst prepared by dielectric-barrier discharge plasma

Yunhui Jiang, Tingjun Fu, Jing Lü and Zhenhua Li
Journal of Energy Chemistry 22 (3) 506 (2013)
https://doi.org/10.1016/S2095-4956(13)60066-2

Influence of Cobalt on Rubidium-Promoted Alumina-Supported Molybdenum Carbide Catalysts for Higher Alcohol Synthesis from Syngas

Kehua Yin, Heng Shou, Daniela Ferrari, Christopher W. Jones and Robert J. Davis
Topics in Catalysis 56 (18-20) 1740 (2013)
https://doi.org/10.1007/s11244-013-0110-6

Preparation of Fischer–Tropsch Supported Cobalt Catalysts Using a New Gas Anti-Solvent Process

Raimon P. Marin, Simon A. Kondrat, James R. Gallagher, et al.
ACS Catalysis 3 (4) 764 (2013)
https://doi.org/10.1021/cs4000359

High performance structured platelet milli-reactor filled with supported cobalt open cell SiC foam catalyst for the Fischer–Tropsch synthesis

Yu Liu, David Edouard, Lâm D. Nguyen, et al.
Chemical Engineering Journal 222 265 (2013)
https://doi.org/10.1016/j.cej.2013.02.066

Microstructural Analysis and Energy‐Filtered TEM Imaging to Investigate the Structure–Activity Relationship in Fischer–Tropsch Catalysts

Ileana Florea, Yuefeng Liu, Ovidiu Ersen, Christian Meny and Cuong Pham‐Huu
ChemCatChem 5 (9) 2610 (2013)
https://doi.org/10.1002/cctc.201300103

Fischer Tropsch synthesis over Co/SiO2 and Co-M (M: Ru, Re)/SiO2 catalysts prepared by a high-temperature super-critical drying method

Hajime Iida, Kei Sakamoto, Mariko Takeuchi and Akira Igarashi
Applied Catalysis A: General 466 256 (2013)
https://doi.org/10.1016/j.apcata.2013.06.027

K-doping of Co/Al2O3 low temperature Fischer–Tropsch catalysts

Ugo Cornaro, Stefano Rossini, Tania Montanari, Elisabetta Finocchio and Guido Busca
Catalysis Today 197 (1) 101 (2012)
https://doi.org/10.1016/j.cattod.2012.07.005

Fischer Tropsch synthesis: Deuterium isotopic study for the formation of oxygenates over CeO2 supported Pt–Co catalysts

Muthu Kumaran Gnanamani, Gary Jacobs, Wilson D. Shafer, Mauro C. Ribeiro, Venkat Ramana Rao Pendyala, Wenping Ma and Burtron H. Davis
Catalysis Communications 25 12 (2012)
https://doi.org/10.1016/j.catcom.2012.03.028

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy

Peter C. K. Vesborg and Thomas F. Jaramillo
RSC Advances 2 (21) 7933 (2012)
https://doi.org/10.1039/c2ra20839c

Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer–Tropsch synthesis

Benoit de Tymowski, Yuefeng Liu, Christian Meny, et al.
Applied Catalysis A: General 419-420 31 (2012)
https://doi.org/10.1016/j.apcata.2012.01.004

Effect of platinum promoters on the removal of O from the surface of cobalt catalysts: A DFT study

Nianthrini Balakrishnan, Babu Joseph and Venkat R. Bhethanabotla
Surface Science 606 (5-6) 634 (2012)
https://doi.org/10.1016/j.susc.2011.11.033

Structure and catalytic performance of alumina-supported copper–cobalt catalysts for carbon monoxide hydrogenation

Jingjuan Wang, Petr A. Chernavskii, Andrei Y. Khodakov and Ye Wang
Journal of Catalysis 286 51 (2012)
https://doi.org/10.1016/j.jcat.2011.10.012

Exploring Iron‐based Multifunctional Catalysts for Fischer–Tropsch Synthesis: A Review

Sònia Abelló and Daniel Montané
ChemSusChem 4 (11) 1538 (2011)
https://doi.org/10.1002/cssc.201100189

Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis

Bjørn Christian Enger, Åse-Lill Fossan, Øyvind Borg, Erling Rytter and Anders Holmen
Journal of Catalysis 284 (1) 9 (2011)
https://doi.org/10.1016/j.jcat.2011.08.008

Role of Palladium in Iron Based Fischer−Tropsch Catalysts Prepared by Flame Spray Pyrolysis

Melanie Minnermann, Suman Pokhrel, Karsten Thiel, et al.
The Journal of Physical Chemistry C 115 (4) 1302 (2011)
https://doi.org/10.1021/jp106860d

Study of the effect of cobalt content in obtaining olefins and paraffins using the Fischer-Tropsch reaction

Bianca Viana de Sousa, Meiry Gláucia Freire Rodrigues, Leonardo Andrés Cano, Maria Virginia Cagnoli, José Fernando Bengoa, Sérgio Gustavo Marchetti and Gina Pecchi
Catalysis Today 172 (1) 152 (2011)
https://doi.org/10.1016/j.cattod.2011.02.035

β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis

Alan Jean-Marie, Anne Griboval-Constant, Andrei Y. Khodakov, Eric Monflier and Fabrice Diehl
Chemical Communications 47 (38) 10767 (2011)
https://doi.org/10.1039/c1cc13800f

Anionic composition of precursors of the Co/Al2O3 catalysts for the Fischer-Tropsch synthesis

I. I. Simentsova, A. A. Khassin, G. A. Filonenko, et al.
Russian Chemical Bulletin 60 (9) 1827 (2011)
https://doi.org/10.1007/s11172-011-0276-7

Influence of sub-stoichiometric sorbitol addition modes on the structure and catalytic performance of alumina-supported cobalt Fischer–Tropsch catalysts

A. Jean-Marie, A. Griboval-Constant, A.Y. Khodakov and F. Diehl
Catalysis Today 171 (1) 180 (2011)
https://doi.org/10.1016/j.cattod.2011.04.002

Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch synthesis catalyst

Maxime Lacroix, Lamia Dreibine, Benoit de Tymowski, et al.
Applied Catalysis A: General 397 (1-2) 62 (2011)
https://doi.org/10.1016/j.apcata.2011.02.012

Next‐Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues

Sergey Zinoviev, Franziska Müller‐Langer, Piyali Das , Nicolás Bertero , Paolo Fornasiero , Martin Kaltschmitt , Gabriele Centi  and Stanislav Miertus
ChemSusChem 3 (10) 1106 (2010)
https://doi.org/10.1002/cssc.201000052

Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer–Tropsch synthesis

Jingping Hong, Wei Chu, Petr A. Chernavskii and Andrei Y. Khodakov
Applied Catalysis A: General 382 (1) 28 (2010)
https://doi.org/10.1016/j.apcata.2010.04.010