Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 79
Number of page(s) 18
DOI https://doi.org/10.2516/ogst/2021056
Published online 20 December 2021
  • Abdelgawad K.Z., Mahmoud M., Elkatatny S., Abdulraheem A., Patil S. (2019) Reaction kinetics and coreflooding study of high-temperature carbonate reservoir stimulation using GLDA in seawater, Energies 12, 18, 3407. [Google Scholar]
  • Abouie A., Korrani A.K., Shirdel M., Sepehrnoori K. (2017) Comprehensive modeling of scale deposition by use of a coupled geochemical and compositional wellbore simulator, SPE J. 22, 04, 1225–1241. [Google Scholar]
  • Adeoti L., Ayolabi E.A., James L. (2017) An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs, J. Afr. Earth Sci. 135, 41–53. [Google Scholar]
  • Ahusborde E., Amaziane B., El Ossmani M. (2018) Improvement of numerical approximation of coupled multiphase multicomponent flow with reactive geochemical transport in porous media, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 73. [Google Scholar]
  • Al-Anazi H.A., Sharma M.M. (2002) Use of a pH sensitive polymer for conformance control, in: International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers. [Google Scholar]
  • Al-Keebali A., Yaslam M., Bin Amro A., Masalmaeh S. (2019) EOR technologies and applications towards 70% recovery factor aspiration in giant carbonate Middle East Reservoirs, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Al-Murayri M.T., Kamal D.S., Baroon H.F., Shahin G.T., Shukla S.R. (2019) Evolution of a Lab-Optimized ASP Formulation for a High Temperature and High Salinity World-Class Clastic Reservoir in the Middle East, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Al-Otaibi A. (2020) An investigation into the roles of chlorides and sulphate salts on the performance of low-salinity injection in sandstone reservoirs: Experimental approach, J. Pet. Explor. Prod. Technol. 10, 7, 2857–2871. [Google Scholar]
  • Al-Saedi H.N., Flori R.E., Alsaba M. (2020) Investigation of smart waterflooding in sandstone reservoirs: Experimental and simulation study part 2, SPE J. 25, 04, 1670–1680. [Google Scholar]
  • Alexeev A., Shapiro A., Thomsen K. (2015) Modeling of dissolution effects on waterflooding, Trans. Porous Media 106, 3, 545–562. [Google Scholar]
  • Allan M.M., Turner A., Yardley B.W.D. (2011) Relation between the dissolution rates of single minerals and reservoir rocks in acidified pore waters, Appl. Geochem. 26, 8, 1289–1301. [Google Scholar]
  • Amirian T., Haghighi M., Sun C., Armstrong R.T., Mostaghimi P. (2019) Geochemical modeling and microfluidic experiments to analyze impact of clay type and cations on low-salinity water flooding, Energy Fuels 33, 4, 2888–2896. [Google Scholar]
  • Ashrafizadeh M., Ahmad Ramazani S.A., Sadeghnejad S. (2017) Enhanced polymer flooding using a novel nano-scale smart polymer: Experimental investigation, Can. J. Chem. Eng. 95, 11, 2168–2175. [Google Scholar]
  • Ashrafizadeh M., Tam K.C., Javadi A., Abdollahi M., Sadeghnejad S., Bahramian A. (2019) Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems, J. Colloid Interface Sci. 556, 313–323. [Google Scholar]
  • Ashrafizadeh M., Tam K.C., Javadi A., Abdollahi M., Sadeghnejad S., Bahramian A. (2020) Dual physically and chemically cross-linked polyelectrolyte nanohydrogels: Compositional and pH-dependent behavior studies, Eur. Polym. J. 122, 109398. [Google Scholar]
  • Bates R.G. (1955) Electrolyte solutions. The measurement and interpretation of conductance, chemical potential and diffusion in solutions of simple electrolytes, J. Am. Chem. Soc. 77, 22, 6086–6087. [Google Scholar]
  • Benson I.P. (2007) Numerical simulation of ph-sensitive polymer injection as a conformance control method, Thesis, The University of Texas at Austin. [Google Scholar]
  • Bhuyan D., Lake L.W., Pope G.A. (1990) Mathematical modeling of high-pH chemical flooding, SPE Reserv. Eng. 5, 02, 213–220. [Google Scholar]
  • Bourbiaux B. (2020) Low salinity effects on oil recovery performance: Underlying physical mechanisms and practical assessment, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 37. [Google Scholar]
  • Boving T.B., Grathwohl P. (2001) Tracer diffusion coefficients in sedimentary rocks: Correlation to porosity and hydraulic conductivity, J. Contam. Hydrol. 53, 1–2, 85–100. [Google Scholar]
  • Chen F., McCool C.S., Green D.W., Willhite G.P. (2010) Experimental and modeling study of the transport of chromium acetate through carbonate rocks, SPE J. 15, 02, 349–367. [Google Scholar]
  • Choi S., Ermel Y., Bryant S., Huh C., Sharma M. (2006) Transport of a pH-sensitive polymer in porous media for novel mobility-control applications, in: SPE/DOE Symposium on Improved Oil Recovery, April, SPE99656. [Google Scholar]
  • Choi S.K. (2005) A study of a pH-sensitive polymer for novel conformance control applications. Thesis, The University of Texas At Austin [Google Scholar]
  • Choi S.K. (2008) pH sensitive polymers for novel conformance control and polymer flooding applications. Thesis, The University of Texas At Austin [Google Scholar]
  • Claes S., Nader F.H., Youssef S. (2018) Coupled experimental/numerical workflow for assessing quantitative diagenesis and dynamic porosity/permeability evolution in calcite-cemented sandstone reservoir rocks, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 36. [Google Scholar]
  • de Aguiar K.L.N.P., de Oliveira P.F., Mansur C.R.E. (2020) A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 8. [Google Scholar]
  • Economides M.J., Nolte K.G. (1989) Reservoir stimulation, Prentice Hall Englewood Cliffs, NJ. [Google Scholar]
  • El-Dessouky H.T., Ettouney H.M. (2002) Preface, in: El-Dessouky H.T., Ettouney H.M. (eds), Fundamentals of salt water desalination, Elsevier Science B.V, Amsterdam, pp. VII–X. [Google Scholar]
  • Elmorsey S. (2013) Challenge and successful application for scale removal Gemsa oil field, Egypt: Field study, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Farasat A., Vafaie Sefti M., Sadeghnejad S., Saghafi H.R. (2017) Mechanical entrapment analysis of enhanced preformed particle gels (PPGs) in mature reservoirs, J. Pet. Sci. Eng. 157, 441–450. [Google Scholar]
  • Fu Y., van Berk W., Schulz H.-M. (2012) Hydrogeochemical modelling of fluid–rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea), Appl. Geochem. 27, 6, 1266–1277. [Google Scholar]
  • Ghasemian J., Riahi S., Ayatollahi S., Mokhtari R. (2019) Effect of salinity and ion type on formation damage due to inorganic scale deposition and introducing optimum salinity, J. Pet. Sci. Eng. 177, 270–281. [Google Scholar]
  • Ghriga M.A., Grassl B., Gareche M., Khodja M., Lebouachera S.E.I., Andreu N., Drouiche N. (2019) Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications, Polym. Bull. 76, 6001–6029. [Google Scholar]
  • Hashmet M.R., AlSumaiti A.M., Qaiser Y., AlAmeri W.S. (2017) Laboratory investigation and simulation modeling of polymer flooding in high-temperature, high-salinity carbonate reservoirs, Energy Fuels 31, 12, 13454–13465. [Google Scholar]
  • Hu Y., Cheng Q., Yang J., Zhang L., Davarpanah A. (2020) A laboratory approach on the hybrid-enhanced oil recovery techniques with different saline brines in sandstone reservoirs, Processes 8, 9, 1051. [Google Scholar]
  • Jouenne S. (2020) Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability, J. Pet. Sci. Eng. 195, 107545. [Google Scholar]
  • Kazempour M., Alvarado V. (2011) Geochemically based modeling of pH-sensitive polymer injection in berea sandstone, Energy Fuels 25, 9, 4024–4035. [Google Scholar]
  • Kazempour M., Sundstrom E., Alvarado V. (2012) Geochemical modeling and experimental evaluation of high-pH floods: Impact of water-rock interactions in sandstone, Fuel 92, 1, 216–230. [Google Scholar]
  • Kielland J. (1937) Individual activity coefficients of ions in aqueous solutions, J. Am. Chem. Soc. 59, 9, 1675–1678. [Google Scholar]
  • Koochakzadeh A., Ashrafizadeh M., Sadeghnejad S. (2021a) Experimental evaluation of enhanced oil recovery by pH-sensitive microgels in carbonate formations, in: 82nd EAGE Annual Conference & Exhibition, European Association of Geoscientists & Engineers. [Google Scholar]
  • Koochakzadeh A., Younesian-Farid H., Sadeghnejad S. (2021b) Acid pre-flushing evaluation before pH-sensitive microgel treatment in carbonate reservoirs: Experimental and numerical approach, Fuel 297, 120670. [Google Scholar]
  • Kornilov A., Zhirov A., Petrakov A., Rogova T., Kurelenkova Y., Afanasiev I., Sansiev G., Fedorchenko G., Fursov G., Kubrak M. (2019) Selection of effective surfactant composition to improve oil displacement efficiency in carbonate reservoirs with high salinity formation water, in: SPE Russian Petroleum Technology Conference, Society of Petroleum Engineers. [Google Scholar]
  • Lake L.W., Bryant S.L., Bryant S.L., Araque-Martinez A.N. (2002) Geochemistry and fluid flow, Gulf Professional Publishing, The University of Oxford, United Kingdom. [Google Scholar]
  • Lalehrokh F., Bryant S.L., Huh C., Sharma M.M. (2008) Application of pH-triggered polymers in fractured reservoirs to increase sweep efficiency, in: SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers. [Google Scholar]
  • Lu B., Wheeler M.F. (2009) Iterative coupling reservoir simulation on high performance computers, Petrol. Sci. 6, 1, 43–50. [Google Scholar]
  • Lu J., Darvari R., Nicot J.-P., Mickler P., Hosseini S.A. (2017) Geochemical impact of injection of Eagle Ford brine on Hosston sandstone formation – Observations of autoclave water–rock interaction experiments, Appl. Geochem. 84, 26–40. [Google Scholar]
  • Mahrous M., Sultan A., Sonnenthal E. (2017) Towards geochemically accurate modeling of carbonate acidizing with HCl acid, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Masalmeh S., AlSumaiti A., Gaillard N., Daguerre F., Skauge T., Skuage A. (2019) Extending polymer flooding towards high-temperature and high-salinity carbonate reservoirs, in: Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers. [Google Scholar]
  • Mitchell R., Grist D., Boyle M. (1980) Chemical treatments associated with North Sea projects, J. Pet. Technol. 32, 05, 904–912. [Google Scholar]
  • Moghadasi J., Müller-Steinhagen H., Jamialahmadi M., Sharif A. (2004) Model study on the kinetics of oil field formation damage due to salt precipitation from injection, J. Pet. Sci. Eng. 43, 3–4, 201–217. [Google Scholar]
  • Morgan J.J., Stumm W. (1996) Aquatic chemistry: Chemical equilibria and rates in natural waters, Wiley, New York. [Google Scholar]
  • Nghiem L. (2003a) Component and reaction data input for GEM-GHG (version 2002.30), Computer Modeling Group, Calgary, Alberta. [Google Scholar]
  • Nghiem L. (2003b) Compositional simulator for carbon dioxide sequestration-part 2, Computer Modeling Group Ltd, Calgary, Canada. [Google Scholar]
  • Olayiwola S.O., Dejam M. (2020) Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage, J. Mol. Liq. 317, 114228. [Google Scholar]
  • Palandri J.L., Kharaka Y.K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, Geological Survey, Menlo Park, CA. [Google Scholar]
  • Patterson J.W. (2014) Placement and performance of pH-triggered polyacrylic acid in cement fractures, The University of Texas At Austin. [Google Scholar]
  • Punase A. (2015) Reaction of simple organic acid with calcite: Effect of reversible reactions, Texas A & M University. [Google Scholar]
  • Qing J., Zhou B., Zhang R., Chen Z., Zhou Y. (2002) Development and application of a silicate scale inhibitor for ASP flooding production scale, in: International Symposium on Oilfield Scale, Society of Petroleum Engineers. [Google Scholar]
  • Rahimi A., Honarvar B., Safari M. (2020) The role of salinity and aging time on carbonate reservoir in low salinity seawater and smart seawater flooding, J. Pet. Sci. Eng. 187, 106739. [Google Scholar]
  • Rostami A., Shokrollahi A., Shahbazi K., Ghazanfari M.H. (2019) Application of a new approach for modeling the oil field formation damage due to mineral scaling, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 62. [Google Scholar]
  • Sadeghnejad S., Ashrafizadeh M., Nourani M. (2021) Improved oil recovery by gel technology: water shut-off and conformance control, in: Hemmat-Sarapardeh A., Schaffie M., Ranjbar M., Dong M., Li Z. (eds), Chemical methods, Gulf Professional Publishing. [Google Scholar]
  • Sadeghnejad S., Masihi M. (2017) Analysis of a more realistic well representation during secondary recovery in 3-D continuum models, Comput. Geosci. 21, 5–6, 1035–1048. [Google Scholar]
  • Safari A., Dowlatabad M.M., Hassani A., Rashidi F. (2016) Numerical simulation and X-ray imaging validation of wormhole propagation during acid core-flood experiments in a carbonate gas reservoir, J. Nat. Gas Sci. Eng. 30, 539–547. [Google Scholar]
  • Schmidt H., Seitz S., Hassel E., Wolf H. (2018) The density–salinity relation of standard seawater, Ocean Sci. 14, 1, 15–40. [Google Scholar]
  • Sevougian S.D., Lake L.W., Schechter R.S. (1995) KGEOFLOW: A new reactive transport simulator for sandstone matrix acidizing, SPE Prod. Facil. (Soc. Pet. Eng.); (United States) 10 1, 13–19. [Google Scholar]
  • Sharma H., Mohanty K.K. (2018) An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates, J. Pet. Sci. Eng. 165, 1021–1039. [Google Scholar]
  • Sharma M., Bryant S., Huh C. (2008) PH sensitive polymers for improving reservoir sweep and conformance control in chemical flooring, The University of Texas at Austin. [Google Scholar]
  • Shuler P., Jenkins W. (1991) Prevention of downhole scale deposition in the Ninian field, SPE Prod. Eng. 6, 02, 221–226. [Google Scholar]
  • Steefel C., Appelo C., Arora B., Jacques D., Kalbacher T., Kolditz O., Lagneau V., Lichtner P., Mayer K.U., Meeussen J. (2015) Reactive transport codes for subsurface environmental simulation, Comput. Geosci. 19, 3, 445–478. [Google Scholar]
  • Taheri M., Bonto M., Eftekhari A.A., Nick H.M. (2019) Towards identifying the mechanisms of the modified-salinity waterflooding by a novel combination of core flooding and mathematical modeling, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Teimouri A., Sadeghnejad S., Dehaghani A.H.S. (2020) Investigation of acid pre-flushing and pH-sensitive microgel injection in fractured carbonate rocks for conformance control purposes, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 52. [Google Scholar]
  • Younesian-Farid H., Sadeghnejad S. (2019) Geochemical performance evaluation of pre-flushing of weak and strong acids during pH-triggered polymer flooding, J. Pet. Sci. Eng. 174, 1022–1033. [Google Scholar]
  • Younesian-Farid H., Sadeghnejad S. (2020) Modeling geochemical reactions of citric acid with ankerite cement during sandstone matrix acidizing, J. Pet. Sci. Eng. 185, 106650. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.