Capillarity in Porous Media: Recent Advances and Challenges
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Capillarity in Porous Media: Recent Advances and Challenges
Article Number 61
Number of page(s) 28
DOI https://doi.org/10.2516/ogst/2021045
Published online 28 September 2021
  • Alizadeh A.H., Keshavarz A., Haghighi M. (2007) Flow rate effect on two-phase relative permeability in Iranian carbonate rocks, in: SPE Middle East Oil and Gas Show and Conference, March 11–14, 2007, Manama, Bahrain. Society of Petroleum Engineers. [Google Scholar]
  • Andersen P.Ø., Standnes D.C., Skjæveland S.M. (2017a) Waterflooding oil-saturated core samples – Analytical solutions for steady-state capillary end effects and correction of residual saturation, J. Pet. Sci. Eng. 157, 364–379. [Google Scholar]
  • Andersen P.Ø., Skjæveland S.M., Standnes D.C. (2017b) A novel bounded capillary pressure correlation with application to both mixed and strongly wetted porous media, in: Abu Dhabi International Petroleum Exhibition & Conference, November 13–16, 2017, Abu Dhabi, UAE. Society of Petroleum Engineers. [Google Scholar]
  • Andersen P.Ø., Brattekås B., Nødland O., Lohne A., Føyen T.L., Fernø M.A. (2019) Darcy-scale simulation of boundary-condition effects during capillary-dominated flow in high-permeability systems, SPE Reserv. Eval. Eng. 22, 02, 673–691. [Google Scholar]
  • Andersen P.Ø., Nesvik E.K., Standnes D.C. (2020a) Analytical solutions for forced and spontaneous imbibition accounting for viscous coupling, J. Pet. Sci. Eng. 186, 106717. [Google Scholar]
  • Andersen P.Ø., Walrond K., Nainggolan C.K., Pulido E.Y., Askarinezhad R. (2020b) Simulation interpretation of capillary pressure and relative permeability from laboratory waterflooding experiments in preferentially oil-wet porous media, SPE Reserv. Eval. Eng. 23, 01, 230–246. [Google Scholar]
  • Andersen P.Ø., Zhou Y. (2020) Steady state relative permeability experiments with capillary end effects: analytical solutions including derivation of the intercept method, J. Pet. Sci. Eng. 192, 1–9. [Google Scholar]
  • Andersen P.Ø. (2021) Early and late time analytical solutions for co-current spontaneous imbibition and generalized scaling, SPE J. 26, 1, 220–240. [Google Scholar]
  • Anderson W.G. (1987) Wettability literature survey part 5: The effects of wettability on relative permeability, J. Pet. Technol. 39, 11, 1453–1468. [Google Scholar]
  • Bourbiaux B.J., Kalaydjian F.J. (1990) Experimental study of cocurrent and countercurrent flows in natural porous media, SPE Reserv. Eng. 5, 03, 361–368. [Google Scholar]
  • Brooks R.H., Corey A.T. (1964) Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State U., Fort Collins, Colorado. [Google Scholar]
  • Chen A.L., Wood A.C. (2001 September) Rate effects on water-oil relative permeability. In Proceedings of the International Symposium of the Society of Core Analysts, 17–19 September 2001, Edinburgh, Scotland, pp. 17–19. [Google Scholar]
  • Dullien F.A. (2012) Porous media: Fluid transport and pore structure, Academic Press, San Diego, California. [Google Scholar]
  • Gupta R., Maloney D.R. (2016) Intercept method – A novel technique to correct steady-state relative permeability data for capillary end effects, SPE Reserv. Eval. Eng. 19, 02, 316–330. [Google Scholar]
  • Hagoort J. (1980) Oil recovery by gravity drainage, Soc. Pet. Eng. J. 20, 03, 139–150. [Google Scholar]
  • Henderson G.D., Danesh A., Tehrani D.H., Al-Shaidi S., Peden J.M. (1998) Measurement and correlation of gas condensate relative permeability by the steady-state method, SPE Reserv. Eval. Eng. 1, 02, 134–140. [Google Scholar]
  • Huang D.D., Honarpour M.M. (1998) Capillary end effects in coreflood calculations, J. Pet. Sci. Eng. 19, 1–2, 103–117. [Google Scholar]
  • Jeong G.S., Ki S., Lee D.S., Jang I. (2021) Effect of the flow rate on the relative permeability curve in the CO2 and brine system for CO2 sequestration, Sustainability 13, 3, 1543. [Google Scholar]
  • Johnson E.F., Bossler D.P., Bossler V.O. (1959) Calculation of relative permeability from displacement experiments, Trans. AIME 216, 01, 370–372. [Google Scholar]
  • Juanes R., Spiteri E.J., Orr F.M. Jr, Blunt M.J. (2006) Impact of relative permeability hysteresis on geological CO2 storage, Water Resour. Res. 42, 12, 1–13. [Google Scholar]
  • Kleppe J., Morse R.A. (1974, January) Oil production from fractured reservoirs by water displacement, in: Fall Meeting of the Society of Petroleum Engineers of AIME, October 6–9, 1974, Houston, Texas, USA. Society of Petroleum Engineers. [Google Scholar]
  • Leverett M. (1941) Capillary behavior in porous solids, Trans. AIME 142, 01, 152–169. [Google Scholar]
  • Nguyen V.H., Sheppard A.P., Knackstedt M.A., Pinczewski W.V. (2006) The effect of displacement rate on imbibition relative permeability and residual saturation, J. Pet. Sci. Eng. 52, 1–4, 54–70. [Google Scholar]
  • Odeh A.S., Dotson B.J. (1985) A method for reducing the rate effect on oil and water relative permeabilities calculated from dynamic displacement data, J. Pet. Technol. 37, 11, 2–051. [Google Scholar]
  • Osoba J.S., Richardson J.G., Kerver J.K., Hafford J.A., Blair P.M. (1951) Laboratory measurements of relative permeability, J. Pet. Technol. 3, 02, 47–56. [Google Scholar]
  • Rapoport L.A., Leas W.J. (1953) Properties of linear waterfloods, J. Pet. Technol. 5, 05, 139–148. [Google Scholar]
  • Reed J., Maas J. (2018 August) Review of the intercept method for relative permeability correction using a variety of case study data, in: The International Symposium of the Society of Core Analysts, Trondheim, Norway, 26–31 August, 2018. [Google Scholar]
  • Richardson J.G., Kerver J.K., Hafford J.A., Osoba J.S. (1952) Laboratory determination of relative permeability, J. Pet. Technol. 4, 08, 187–196. [Google Scholar]
  • Santos I.C.A.B.A., Eler F.M., Nunes D.S.S., Couto P. (2021) Evaluation of capillary end effect in water-oil permeability tests using multiple flow rates technique, Braz. J. Pet. Gas 14, 4, 259–267. [Google Scholar]
  • Sidiq H., Amin R., Kennaird T. (2017) The study of relative permeability and residual gas saturation at high pressures and high temperatures, Adv. Geo-Energy Res. 1, 1, 64–68. [Google Scholar]
  • Valavanides M.S. (2018) Review of steady-state two-phase flow in porous media: independent variables, universal energy efficiency map, critical flow conditions, effective characterization of flow and pore network, Trans. Porous Media 123, 45–99. [Google Scholar]
  • Virnovsky G.A., Guo Y., Skjaeveland S.M. (1995 May) Relative permeability and capillary pressure concurrently determined from steady-state flow experiments, in: IOR 1995-8th European Symposium on Improved Oil Recovery, Vienna, Austria, 15–17 May 1995. European Association of Geoscientists & Engineers, cp-107 p. [Google Scholar]
  • Virnovsky G.A., Vatne K.O., Skjaeveland S.M., Lohne A. (1998, January) Implementation of multirate technique to measure relative permeabilities accounting, in: SPE Annual Technical Conference and Exhibition, September 27–30, 1998, New Orleans, Louisiana, USA Society of Petroleum Engineers. [Google Scholar]
  • Zou S., Liu Y., Cai J., Armstrong R.T. (2020) Influence of capillarity on relative permeability in fractional flows, Water Resour. Res. 56, 11, 1–10. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.