Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 51
Number of page(s) 8
DOI https://doi.org/10.2516/ogst/2021032
Published online 30 June 2021
  • Dentz M., Carrera J. (2007) Mixing and spreading in stratified flow, Phys. Fluids 19, 017107. ISSN 1070-6631. https://doi.org/10.1063/1.2427089. [CrossRef] [Google Scholar]
  • Berkowitz B., Cortis A., Dentz M., Scher H. (2006) Modeling non-fickian transport in geological formations as a continuous time random walk, Rev. Geophys. 440, 2, 1–49. ISSN 1944-9208. https://doi.org/10.1029/2005RG000178. [Google Scholar]
  • Bear J. (1972) Dynamics of fluids in porous media, Elsevier, New York. [Google Scholar]
  • Parkhurst D.L., Appelo C.A.J. (2013) Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Vol. 6–A43, U.S. Department of the Interior, U.S. Geological Survey Techniques and Methods, Reston, VA. [Google Scholar]
  • Taylor G.I. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. A. 219, 186–203. [Google Scholar]
  • Aris R. (1956) On the dispersion of a solute in a fluid flowing through a tube, Proc. Roy. Soc. A. 235, 67–77. [Google Scholar]
  • Bijeljic B., Blunt M.J. (2006) Pore-scale modeling and continuous time random walk analysis of dispersion in porous media, Water Resour. Res. 42, W01202, 1–5. ISSN 0043-1397. https://doi.org/10.1029/2005wr004578. [Google Scholar]
  • Spanne P., Thovert J.F., Jacquin C.J., Lindquist W.B., Jones K.W., Adler P.M. (1994) Synchrotron computed microtomography of porous media: Topology and transports, Phys. Rev. Lett. 730, 14, 2001. [Google Scholar]
  • Andrä H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E.H., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. (2013) Digital rock physics benchmarks part I: Imaging and segmentation, Comput. Geosci. 500, 25–32. [Google Scholar]
  • Andrä H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E.H., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. (2013) Digital rock physics benchmarks part II: Computing effective properties, Comput. Geosci. 500, 33–43. Benchmark problems, datasets and methodologies for the computational geosciences. [Google Scholar]
  • Soulaine C., Maes J., Roman S. (2021) Computational microfluidics for geosciences, Front. Water 3, 1–11. https://doi.org/10.3389/frwa.2021.643714. [Google Scholar]
  • Bijeljic B., Mostaghimi P., Blunt M.J. (2011) Signature of non-fickian solute transport in complex heterogeneous porous media, Phys. Rev. Lett. 107, 204502. [Google Scholar]
  • Nakashima Y., Watanabe Y. (2002) Estimate of transport properties of porous media by microfocus X-ray computed tomography and random walk simulation, Water Resour. Res. 38, 8–1–8–12. ISSN 0043-1397. https://doi.org/10.1029/2001wr000937. [Google Scholar]
  • Kang P.K., Anna P., Nunes J.P., Bijeljic B., Blunt M.J., Juanes R. (2014) Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media, Geophys. Res. Lett. 410, 17, 6184–6190. [Google Scholar]
  • Blunt M.J., Bijeljic B., Dong H., Gharbi O., Iglauer S., Mostaghimi P., Paluszny A., Pentland C. (2013) Pore-scale imaging and modelling, Adv. Water Resour. 51, 197–216. [Google Scholar]
  • Noiriel C., Soulaine C. (2021) Pore-scale imaging and modelling of reactive flow in evolving porous media: Tracking the dynamics of the fluid-rock interface, Trans. Porous Media. https://doi.org/10.1007/s11242-021-01613-2. [Google Scholar]
  • Molins S., Trebotich D., Steefel C.I., Shen C. (2012) An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation, Water Resour. Res. 48, W03527, 1–11. ISSN 0043-1397. https://doi.org/10.1029/2011wr011404. [Google Scholar]
  • Soulaine C., Roman S., Kovscek A., Tchelepi H.A. (2017) Mineral dissolution and wormholing from a pore-scale perspective, J. Fluid Mech. 827, 457–483. [Google Scholar]
  • Guibert R., Nazarova M., Horgue P., Hamon G., Creux P., Debenest G. (2015) Computational permeability determination from pore-scale imaging: Sample size, mesh and method sensitivities, Trans. Porous Media 1070, 3, 641–656. [Google Scholar]
  • Soulaine C., Quintard M. (2014) On the use of a Darcy – Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packings, Int. J. Heat Mass Transf. 740, 88–100. [Google Scholar]
  • Raeini A.Q., Blunt M.J., Bijeljic B. (2014) Direct simulations of two-phase flow on micro-ct images of porous media and upscaling of pore-scale forces, Adv. Water Resour. 740, 116–126. ISSN 0309-1708. [Google Scholar]
  • Soulaine C., Gjetvaj F., Garing C., Roman S., Russian A., Gouze P., Tchelepi H. (2016) The impact of sub-resolution porosity of X-ray microtomography images on the permeability, Trans. Porous Media 1130, 1, 227–243. [Google Scholar]
  • Scheibe T.D., Perkins W.A., Richmond M.C., McKinley M.I., Romero-Gomez P.D.J., Oostrom M., Wietsma T.W., Serkowski J.A., Zachara J.M. (2015) Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column, Water Resour. Res. 510, 2, 1023–1035. [Google Scholar]
  • Bijeljic B., Raeini A., Mostaghimi P., Blunt M.J. (2013) Predictions of non-fickian solute transport in different classes of porous media using direct simulation on pore-scale images, Phys. Rev. E 87, 013011. [Google Scholar]
  • Noetinger B., Roubinet D., Russian A., Le Borgne T., Delay F., Dentz M., de Dreuzy J.-R., Gouze P. (2016) Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Trans. Porous Media 115, 345–385. ISSN 0169-3913. https://doi.org/10.1007/s11242-016-0693-z. [Google Scholar]
  • De Anna P., Le Borgne T., Dentz M., Tartakovsky A.M., Bolster D., Davy P. (2013) Flow intermittency, dispersion, and correlated continuous time random walks in porous media, Phys. Rev. Lett. 1100, 18, 184502. [Google Scholar]
  • Ogata A., Banks R.B. (1961) A solution of the differential equation of longitudinal dispersion in porous media. Number 411,A in Geological Survey professional Paper, United States Department of the Interior. US Government Printing Office, Washington, DC. [Google Scholar]
  • Ortega-Ramírez M.P., Oxarango L. (2021) Effect of X-ray μ-ct resolution on the computation of permeability and dispersion coefficient for granular soils, Trans. Porous Media 137, 307–326. ISSN 0169-3913. https://doi.org/10.1007/s11242-021-01557-7. [Google Scholar]
  • Zaretskiy Y., Geiger S., Sorbie K., Förster M. (2010) Efficient flow and transport simulations in reconstructed 3d pore geometries, Adv. Water Resour. 330, 12, 1508–1516. ISSN 0309-1708. https://doi.org/10.1016/j.advwatres.2010.08.008. URL https://www.sciencedirect.com/science/article/pii/S0309170810001521. [Google Scholar]
  • Carbonell R.G., Whitaker S. (1983) Dispersion in pulsed systems – II: Theoretical developments for passive dispersion in porous media, Chem. Eng. Sci. 380, 11, 1795–1802. [Google Scholar]
  • Wood B.D. (2007) Inertial effects in dispersion in porous media, Water Resour. Res. 430, W12S16, 1–16. ISSN 0043-1397. https://doi.org/10.1029/2006wr005790. [Google Scholar]
  • Richmond M.C., Perkins W.A., Scheibe T.D., Lambert A., Wood B.D. (2013) Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows, Adv. Water Resour. 62, 215–226. ISSN 0309-1708. https://doi.org/10.1016/j.advwatres.2013.06.014. [Google Scholar]
  • Whitaker S. (1999) The method of volume averaging, theory and applications of transport in porous media, Kluwer Academic, Dorderecht. [Google Scholar]
  • Roman S., Soulaine C., Abu AlSaud M., Kovscek A., Tchelepi H. (2016) Particle velocimetry analysis of immiscible two-phase flow in micromodels, Adv. Water Resour. 95, 199–211. [Google Scholar]
  • Patankar S.V. (1980) Numerical heat transfer and fluid flow, Taylor & Francis, Washington, DC. [Google Scholar]
  • Fatt I. (1956) The network model of porous media, Trans. AIME 207, 01, 144–181. [Google Scholar]
  • Pfannkuch H.O. (1963) Contribution à l’étude des deplacements de fluides miscibles dans un milieu poreux, Rev. Inst. Fr. Pet. 18, 215–270. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.