- Ahn H., Freihaut J.D., Rim D. (2019) Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs, Energy 169, 420–432. https://doi.org/10.1016/j.energy.2018.11.126. [CrossRef] [Google Scholar]
- Balakheli M.M., Chahartaghi M., Sheykhi M., Hashemian S.M., Rafiee N. (2020) Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints, Energy Convers. Manage. 203, 112253. https://doi.org/10.1016/j.enconman.2019.112253. [CrossRef] [Google Scholar]
- Chahartaghi M., Sheykhi M. (2019) Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases, Energy 174, 1251–1266. https://doi.org/10.1016/j.energy.2019.03.012. [CrossRef] [Google Scholar]
- Cui Y., Geng Z., Zhu Q., Han Y. (2017) Review: Multi-objective optimization methods and application in energy saving, Energy, Elsevier 125(C), 681–704. https://doi.org/10.1016/j.energy.2017.02.174. [Google Scholar]
- Dmitriev M.E., Sadreeva K.K., Pshenin V.V., Gaysin M.T. (2019) Dermination of the VOC vapor relative flow rate during tanker loading operations, Transp. Storage Oil Prod. Hydrocarb. 1, 10–13. https://doi.org/10.24411/0131-4270-2019-10102. [Google Scholar]
- Energy Institute (2008) Vapor recovery units–guidance on preventing and controlling temperature excursions in carbon beds, 2nd edn., Energy Institute, London. [Google Scholar]
- Gruber H. (2019) Proposals for a digital industrial policy for Europe, Telecommun. Policy, Elsevier 43, 2, 116–127. https://doi.org/10.1016/j.telpol.2018.06.003. [CrossRef] [Google Scholar]
- Helmig D., Thompson C.R., Evans J., Boylan P., Hueber J., Park J.H. (2014) Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah, Environ. Sci. Technol. 48, 4707–4715. https://doi.org/10.1021/es405046r. [CrossRef] [PubMed] [Google Scholar]
- Ilinova A., Cherepovitsyn A., Evseeva O. (2018) Stakeholder management: An approach in CCS projects, Resources 7, 83. https://doi.org/10.3390/resources7040083rces. [CrossRef] [Google Scholar]
- Karbasian H.R., Kim D.Y., Yoon S.Y., Ahn J.H., Kim K.C. (2017) A new method for reducing VOCs formation during crude oil loading process, J. Mech. Sci. Technol. 31, 1701–1710. https://doi.org/10.1007/s12206-017-0318-7. [CrossRef] [Google Scholar]
- Klimont Z., Amann M., Cofala J. (2000) Estimating costs for controlling emissions of Volatile Organic Compounds (VOC) from stationary sources in Europe. IIASA Interim Report IR-00-051. https://www.jstor.org/stable/resrep15727. [Google Scholar]
- Korshak A.A., Gaisin M.T., Pshenin V.V. (2019) Method of structural minimization of the average risk for identification of mass transfer of evaporating oil at tanker loading. Neftyanoe Khozyaystvo – Oil Industry 2019, 10, 108–111. https://doi.org/10.24887/0028-2448-2019-10-108-111. [CrossRef] [Google Scholar]
- Krummenauer E.J., Rossini E.G., de Souza J., Beluco A. (2018) Estimation of emissions of volatile organic vapors from parameters measured in a fuel loading terminal, Int. Energy Environ. Found. 9, 2, 137–144. http://hdl.handle.net/10183/183245. [Google Scholar]
- Lee K., Boufadel M., Chen B., Foght J., Hodson P., Swanson S., Venosa A. (2015) Expert panel report on the behaviour and ecological impacts of crude oil released into aqueous environments, Royal Society of Canada, Ottawa, ON. ISBN 978-1-928140-02-3. [Google Scholar]
- Liang J., Sun L., Li T. (2018) A novel defrosting method in gasoline vapor recovery application, Energy 163, 751–765. https://doi.org/10.1016/j.energy.2018.08.172. [CrossRef] [Google Scholar]
- Litvinenko V. (2020) Digital economy as a factor in the technological development of the mineral sector, Nat. Resour. Res. 29, 3, 1521–1541. https://doi.org/10.1007/s11053-019-09568-4. [CrossRef] [Google Scholar]
- Liu X., Zhu J., Zhang S., Hao J., Liu G. (2015) Integrating LINMAP and TOPSIS methods for hesitant fuzzy multiple attribute decision making, J. Intell. Fuzzy Syst. 28, 1, 257–269. https://doi.org/10.3233/IFS-141296. [CrossRef] [Google Scholar]
- Mulder T. (2007) VOC recovery systems, Hydrocarb. Eng. 12, 6, 37–40. [Google Scholar]
- Pannucharoenwong N., Chabuanoi T., Benjapiyaporn C., Echaroj S. (2018) The optimal design of prototype to replace the Vapor Recovery Unit (VRU) using computational fluid dynamic analysis, Int. J. Appl. Eng. Res. 13, 3, 1623–1627. https://ripublication.com/ijaer18/ijaerv13n3_12.pdf. [Google Scholar]
- Pashkevich M.A., Petrova T.A. (2019) Recyclability of ore beneficiation wastes at the Lomonosov deposit, J. Ecol. Eng. 20, 27–33. https://doi.org/10.12911/22998993/94919. [CrossRef] [Google Scholar]
- Quoilin S., Declaye S., Tchanche B.F., Lemort V. (2011) Thermo-economic optimization of waste heat recovery organic Rankine cycles, Appl. Therm. Eng. 31, 14–15, 2885–2893. https://doi.org/10.1016/j.applthermaleng.2011.05.014. [CrossRef] [Google Scholar]
- Romasheva N.V., Kruk M.N., Cherepovitsyn A.E. (2018) Propagation perspectives of CO2 sequestration in the world, Int. J. Mech. Eng. Technol. 9, 1877–1885. [Google Scholar]
- Rudd H.J., Hill N.A. (2001) Measures to reduce emissions of VOCs during loading and unloading of ships in the EU. Report no. AEAT/ENV/R/0469 Issue 2. Produced for the European Commission DG Environment. https://ec.europa.eu/environment/air/pdf/vocloading.pdf. [Google Scholar]
- Seo J.W., Oh M., Lee T.H. (2000) Design optimization of a crude oil distillation process, Chem. Eng. Technol. 23, 157–164. https://doi.org/10.1002/(SICI)1521-4125(200002)23:2<157::AID-CEAT157>3.0.CO;2-C. [CrossRef] [Google Scholar]
- Shibuya Y. (2014) Vapor recovery technique for crude oil ship loading – spray absorption, JFE Technical Report, No. 19, pp. 158–166. https://www.jfe-steel.co.jp/en/research/report/019/pdf/019-29.pdf. [Google Scholar]
- Shipley S. (2011) Developing an effective crude oil vapor recovery system, in: Port Technology International, Edition 49, Simon Shipley, Aker Cool Sorption (Aker Solutions), Glostrup, Denmark, pp. 80–82. https://www.porttechnology.org/wp-content/uploads/2019/05/80-82.pdf. [Google Scholar]
- Tcvetkov P., Cherepovitsyn A., Makhovikov A. (2020) Economic assessment of heat and power generation from small-scale liquefied natural gas in Russia, Energy Rep. 6, 391–402. https://doi.org/10.1016/j.egyr.2019.11.093. [CrossRef] [Google Scholar]
- Tuttle W.N., Young J.W. (2011) An overview of marine vapour control system safety requirements, in: Port Technology International, Edition 34, pp. 156–159. [Google Scholar]
- U.S. EPA (2006) Installing Vapor Recovery Units on Storage Tanks, Lessons Learned from Natural Gas Star Partners. United States Environmental Protection Agency Air and Radiation, Environmental Topics. https://www.epa.gov/sites/production/files/2016-06/documents/ll_final_vap.pdf. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/ogst/2021022 | |
Published online | 07 June 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.