- Abatzoglou N., Boivin S. (2009) A review of biogas purification processes, Biofuels Bioprod. Biorefin. 3, 42–71. https://doi.org/10.1002/bbb.117. [Google Scholar]
- Al Bahri M., Calvo L., Gilarranz M., Rodriguez J. (2012) Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water, Chem. Eng. J. 203, 348–356. https://doi.org/10.1016/j.cej.2012.07.053. [Google Scholar]
- Arencibia A., Pizarro P., Sanz R., Serrano D. (2019) Microporous and mesoporous materials CO2 adsorption on amine-functionalized clays, Micropor. Mesopor. Mater. 282, 38–47. https://doi.org/10.1016/j.micromeso.2019.03.012. [Google Scholar]
- Asmani M., Kermel C., Leriche A., Ourak M. (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics, J. Eur. Ceram. Soc. 21, 1081–1086. https://doi.org/10.1016/S0955-2219(00)00314-9. [Google Scholar]
- Baltrusaitis J., Schuttlefield J., Zeitler E., Jensen J., Grassian V. (2007) Surface reactions of carbon dioxide at the adsorbed water – oxide interface, J. Phys. Chem. C 111, 14870–14880. https://doi.org/10.1021/jp074677l. [Google Scholar]
- Cavalcanti P., de Carvalho R., das Chagas A., da Silveira M., Tavares L. (2018) Surface breakage of fired iron ore pellets by impact, Powder Technol. 342, 735–743. https://doi.org/10.1016/j.powtec.2018.10.044. [Google Scholar]
- Cecilia J., Vilarrasa-García E., Cavalcante C., Azevedo D., Franco F., Rodríguez-Castellón E. (2018) Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture, J. Environ. Chem. Eng. 6, 4573–4587. https://doi.org/10.1016/j.jece.2018.07.001. [Google Scholar]
- Chen Y., Lu D. (2015) CO2 capture by kaolinite and its adsorption mechanism, Appl. Clay Sci. 104, 221–228. https://doi.org/10.1016/j.clay.2014.11.036. [Google Scholar]
- Choi S., Drese J., Jones C. (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem 2, 796–854. https://doi.org/10.1002/cssc.200900036. [CrossRef] [PubMed] [Google Scholar]
- Chouikhi N., Cecilia J., Vilarrasa-García E., Besghaier S., Chlendi M., Franco F., Rodriguez E., Bagane M. (2019) CO2 adsorption of materials synthesized from clay minerals: A review, Minerals 9, 514. https://doi.org/10.3390/min9090514. [Google Scholar]
- Creamer A., Gao B. (2016) Carbon based adsorbent for combustion CO2 capture: A critical review, Environ. Sci. Technol. 50, 7276–7289. https://doi.org/10.1021/acs.est.6b00627. [Google Scholar]
- Erguler Z., Ulusay R. (2009) Water-induced variations in mechanical properties of clay-bearing rocks, Int. J. Rock Mech. Min. Sci. 46, 355–370. https://doi.org/10.1016/j.ijrmms.2008.07.002. [Google Scholar]
- Garba Z., Galadima A. (2020) Carbon capture and storage (CCS) technology: Challenges to implementation, in: Encyclopedia of Renewable and Sustainable Materials, Vol. 3, Elsevier, pp. 291–299. https://doi.org/10.1016/B978-0-12-803581-8.11002-1. [Google Scholar]
- Garshasbi V., Jahangiri M., Anbia M. (2017) Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays, Appl. Surf. Sci. 393, 225–233. https://doi.org/10.1016/j.apsusc.2016.09.161. [Google Scholar]
- Ghanbari T., Abnisa F., Ashri W. (2020) A review on production of metal-organic frameworks (MOF) for CO2 adsorption, Sci. Total Environ. 707, 135090. https://doi.org/10.1016/j.scitotenv.2019.135090. [Google Scholar]
- Goméz-Pozuelo G., Sanz-Peréz E., Arencibia A., Pizarro P., Sanz R., Serrano D. (2019) CO2 adsorption on amine-functionalized clays, Micropor. Mesopor. Mater. 282, 38–47. https://doi.org/10.1016/j.micromeso.2019.03.012. [Google Scholar]
- González J., Román S., González-García C., Valente J., Ortiz L. (2009) Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation, Ind. Eng. Chem. Res. 48, 7474–7481. https://doi.org/10.1021/ie801848x. [Google Scholar]
- Gul A., Sirkeci A., Boylu F., Guldan G., Burat F. (2014) Improvement of mechanical strength of iron ore pellets using raw and activated bentonites as binders, Physicochem. Probl. Miner. Process. 51, 23–36. https://doi.org/10.5277/ppmp150203. [Google Scholar]
- Guo Y., Li C., Lu S., Zhao C. (2015) K2CO3 modified potassium feldspar for CO2 capture from post-combustion flue gas, Energy Fuels 29, 8151–8156. https://doi.org/10.1021/acs.energyfuels.5b02207. [Google Scholar]
- Hakim A., Marliza T., Tahari N., Isahak R., Yusop R., Hisham W., Yarmo A. (2016) Studies on CO2 adsorption and desorption properties from various type iron oxides, Ind. Eng. Chem. Res. 55, 7888–7897. https://doi.org/10.1021/acs.iecr.5b04091. [Google Scholar]
- Howarth D., Rowlands J. (1986) Development of an index to quantify rock texture for qualitative assessment of intact rock properties, Geotech. Test. J. 9, 69–79. https://doi.org/10.1520/GTJ10627J. [Google Scholar]
- Hu P., Zhang S., Wang H., Pan D., Tian J., Tang Z., Volinsky A. (2011) Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction, J. Alloys Compd. 509, 2316–2319. https://doi.org/10.1016/j.jallcom.2010.10.211. [Google Scholar]
- International Energy Agency (2017) CO2 emissions from fuel combustion 2017, IEA Publications. ISBN: 978-92-64-27819-6. https://doi.org/10.1787/22199446. [Google Scholar]
- Kawatra S., Ripke S. (2002) Pelletizing steel mill desulfurization slag, Int. J. Miner. Process. 65, 165–175. https://doi.org/10.1016/S0301-7516(01)00073-4. [Google Scholar]
- Komadel P., Madejová J. (2013) Acid activation of clay minerals, Dev. Clay Sci. 5, 385–409. Elsevier. https://doi.org/10.1016/B978-0-08-098258-8.00013-4. [Google Scholar]
- Kuruppu M., Chong K. (2012) Fracture toughness testing of brittle materials using a Semi-Circular Bend (SCB) specimen, Eng. Fract. Mech. 91, 133–150. https://doi.org/10.1016/j.engfracmech.2012.01.013. [Google Scholar]
- Lagos K., Marinkovic B., Dosen A., Guamán M., Guerrero V., Pardo E., Pontón P. (2020) Data on phase and chemical compositions of black sands from “El Ostional” beach situated in Mompiche, Ecuador, Data Brief 32, 106214. https://doi.org/10.1016/j.dib.2020.106214. [Google Scholar]
- Omrani H., Hassini L., Benazzouk A., Beji H., ELcafsi A., (2020) Elaboration and characterization of clay-sand composite based on Juncus acutus fibers, Constr. Build. Mater. 238, 117712. https://doi.org/10.1016/j.conbuildmat.2019.117712. [Google Scholar]
- Pham T., Lee B., Kim J., Lee C. (2016) Enhancement of CO2 capture by using synthesized nano-zeolite, J. Taiwan Inst. Chem. Eng. 64, 220–226. https://doi.org/10.1016/j.jtice.2016.04.026. [Google Scholar]
- Rao N., Wang M., Shang Z., Hou Y., Fan G., Li J. (2017) CO2 adsorption by amine-functionalized MCM-41: A comparison between impregnation and grafting modification methods, Energy Fuels 32, 670–677. https://doi.org/10.1021/acs.energyfuels.7b02906. [Google Scholar]
- Samanta A., Zhao A., Shimizu G., Sarkar P., Gupta R. (2012) Post-combustion CO2 capture using solid sorbents: A review, Ind. Eng. Chem. Res. 51, 1438–1463. https://doi.org/10.1021/ie200686q. [CrossRef] [Google Scholar]
- Schöpfer M., Abe S., Childs C., Walsh J. (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling, Int. J. Rock Mech. Min. Sci. 46, 250–261. https://doi.org/10.1016/j.ijrmms.2008.03.009. [Google Scholar]
- Sifat N., Haseli Y. (2019) A critical review of CO2 capture technologies and prospects for clean power generation, Energies 12, 4143. https://doi.org/10.3390/en12214143. [CrossRef] [Google Scholar]
- Sivrikaya O., Arol A. (2013) An investigation of the relationship between compressive strength and dust generation potential of magnetite pellets, Int. J. Min. Process. 123, 158–164. https://doi.org/10.1016/j.minpro.2013.06.006. [CrossRef] [Google Scholar]
- Sousa L. (2013) The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones, Env. Earth Sci. 69, 1333–1346. https://doi.org/10.1007/s12665-012-2036-x. [CrossRef] [Google Scholar]
- Tavares L., de Almeida R. (2020) Breakage of green iron ore pellets, Powder Technol. 366, 497–507. https://doi.org/10.1016/j.powtec.2020.02.074. [CrossRef] [Google Scholar]
- Zeleňák V., Badaničová M., Halamová D., Čejka J., Zukal A., Murafa N., Goerigk G. (2008) Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chem. Eng. J. 144, 336–342. https://doi.org/10.1016/j.cej.2008.07.025. [CrossRef] [Google Scholar]
- Zhang S., Chen C., Ahn W. (2019) Recent progress on CO2 capture using amine-functionalized silica, Curr. Opin. Green Sustain. Chem. 16, 26–32. https://doi.org/10.1016/j.cogsc.2018.11.011. [CrossRef] [Google Scholar]
- Zhao Y., Cao Y., Zhong Q. (2014) CO2 capture on metal-organic framework and gra-phene oxide composite using a high-pressure static adsorption apparatus, J. Clean Energy Technol. 2, 34–37. https://doi.org/10.7763/JOCET.2014.V2.86. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 49 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/ogst/2021030 | |
Published online | 28 June 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.