Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 36
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2021017
Published online 26 May 2021
  • Sun W., Shi Y., Chen J., Xi Z., Zhao L. (2013) Alkylation kinetics of isobutane by C4 olefins using sulfuric acid as catalyst, Ind. Eng. Chem. Res. 52, 15262–15269. [Google Scholar]
  • Albright L.F., Spalding M.A., Kopser C.G., Eckert R.E. (1988) Alkylation of isobutane with C4 olefins. 2. Production and characterization of conjunct polymers, Ind. Eng. Chem. Res. 27, 386–391. [Google Scholar]
  • Liu Y., Liu G., Wu G., Hu R. (2020) The alkylation of isobutane and 2-butene in rotating packed bed reactor: Using ionic liquid and solid acid as catalysts, Ind. Eng. Chem. Res. 59, 14767–14775. [Google Scholar]
  • Albright L.F. (1998) Updating alkylate gasoline technology, Chemtech. 28, 45–46. [Google Scholar]
  • Esteves P.M., Araújo C.L., Horta B., Alvarez L.J., Zicovich-Wilson C.M., Ramírez-Solís A. (2005) The isobutylene-isobutane alkylation process in liquid HF revisited, J. Phys. Chem. B 109, 12946–12955. [Google Scholar]
  • Katsman E.A., Berenblyum A.S., Zavilla J., Hommeltoft S.I. (2004) Poisoning effect of acid soluble oil on triflic acid-catalyzed isobutane alkylation, Kinet. Catal. 245, 676–678. [Google Scholar]
  • Ma H., Zhang R., Meng X., Liu Z., Liu H., Xu C., Chen R., Klusener P., De With J. (2014) Solid formation during composite-ionic-liquid-catalyzed isobutane alkylation, Energy Fuel. 28, 5389–5395. [Google Scholar]
  • Patrilyak K.I., Patrilyak L.K., Voloshina Y.G., Manza I.A., Konovalov S.V. (2011) Distribution of the products from the alkylation of isobutane with butenes at a zeolite catalyst and the reaction mechanism, Theor. Exp. Chem. 47, 205–214. [Google Scholar]
  • Arbuzov A.B., Drozdov V.A., Kazakov M.O., Lavrenov A.V., Trenikhin M.V., Likholobova V.A. (2012) Liquid-phase isobutane alkylation with butenes over aluminum chloride complexes synthesized in situ from activated aluminum and tert-butyl chloride, Kinet. Catal. 53, 357–362. [Google Scholar]
  • Berenblyum A.S., Katsman E.A., Berenblyum R.A., Hommeltoft S.I. (2005) Modeling of side reactions of isobutane alkylation with butenes catalyzed by trifluoromethane sulfonic acid, Appl. Catal. A 284, 207–214. [Google Scholar]
  • Dalla Costa B.O., Querini C.A. (2010) Isobutane alkylation with butenes in gas phase, Chem. Eng. J. 162, 829–835. [Google Scholar]
  • Panattoni G., Querini C.A. (2001) Isobutane alkylation with C4 olefins: regeneration of metal-containing catalysts, Stud. Surf. Sci. Catal. 139, 181–188. [Google Scholar]
  • Bogdan V.I., Kazanskii V.B. (2005) Isobutane alkylation with butenes and the oligomerization of C4 olefins in supercritical reagents, Kinet. Catal. 46, 834–838. [Google Scholar]
  • Díaz Velázquez H., Likhanova N., Aljammal N., Verpoort F., Martínez-Palou R. (2020) New insights into the progress on the isobutane/butene alkylation reaction and related processes for high-quality fuel production. A critical review, Energy Fuel. 34, 15525–15556. [Google Scholar]
  • Berenblyum A.S., Ovsyannikova L.V., Katsman E.A., Zavilla J., Hommeltoft S.I., Karasev Y.Z. (2002) Acid soluble oil, by-product formed in isobutane alkylation with alkene in the presence of trifluoro methane sulfonic acid: Part I Acid soluble oil composition and its poisoning effect, Appl. Catal. A Gen. 232, 51–58. [Google Scholar]
  • Liu Y., Wu G., Hu R., Gao G. (2020) Effects of aromatics on ionic liquids for C4 alkylation reaction: Insights from scale-up experiment and molecular dynamics simulation, Chem. Eng. J. 402, 126252. [Google Scholar]
  • Froment G.F. (2001) Modeling of catalyst deactivation, Appl. Catal., A 212, 117–128. [Google Scholar]
  • Aguayo A.T., Gayubo A.G., Atutxa A., Olazar M., Bilbao J. (2002) Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst, Ind. Eng. Chem. Res. 41, 4216–4224. [Google Scholar]
  • Rahimpour M.R., Esmaili S., Bagheri Ghalehghazi N. (2003) A kinetic and deactivation model for industrial catalytic naphtha reforming, Iran J. Sci. Technol. Trans. B. Technol. 27, 279–290. [Google Scholar]
  • Bartholomew C.H. (2001) Mechanisms of catalyst deactivation, Appl. Catal., A 212, 17–60. [Google Scholar]
  • Ostrovsky G.M., Zyskin A.G., Snagovsky Y.S., Slinko M.G. (1987) Steady state multiplicity of chemically reacting systems. The method of computation, Chem. Eng. Sci. 42, 2579–2586. [CrossRef] [Google Scholar]
  • Forzatti P., Lietti L. (1999) Catalyst deactivation, Catal. Today 52, 165–181. [CrossRef] [Google Scholar]
  • Moulijn J.A., Van Diepen A.E., Kapteijn F. (2001) Catalyst deactivation: Is it predictable? What to do? Appl. Catal. A 212, 3–6. [CrossRef] [Google Scholar]
  • Coker A.K. (2001) Modeling of chemical kinetics and reactor design technology, Gulf Professional Publishing, Oxford. [Google Scholar]
  • Bockhorn H. (1990) Mathematical modeling, in: Ullmann’s Encyclopedia of Industrial Chemistry, 5th edn., B. Elvers, S. Hawkins, G. Schultz, H. Hofmann (eds), VCH Verlagsgesellschaft mbH, Weinheim. [Google Scholar]
  • Modeling N. (2005) Numerical modeling for fluid flow, heat transfer, and combustion, Steam: Its Gener. Use 114, 383–393. [Google Scholar]
  • Dym C.L. (2004) Principles of mathematical modeling, Academic Press, Oxford. [Google Scholar]
  • Heinz S. (2014) Mathematical modeling, Springer, Berlin. [Google Scholar]
  • Cao P., Zheng L., Sun W., Zhao L. (2019) Multiscale modeling of isobutane alkylation with mixed C4 olefins using sulfuric acid as catalyst, Ind. Eng. Chem. Res. 58, 6340–6349. [CrossRef] [Google Scholar]
  • Ivashkina E.N., Ivanchina E.D., Nurmakanova A.E., Boychenko S.S., Ushakov A.S., Dolganova I.O. (2016) Mathematical modeling sulfuric acid catalyzed alkylation of isobutane with olefins, Procedia Eng. 152, 81–86. [CrossRef] [Google Scholar]
  • Khlebnikova E., Ivashkina E., Dolganova I. (2017) Benzene alkylation with ethylene: The way to increase the process efficiency, Chem. Eng. Process. Process Intensif. 120, 234–240. [CrossRef] [Google Scholar]
  • Ivashkina E., Khlebnikova E., Dolganova I., Dolganov I., Khroyan L.A. (2020) Mathematical Modeling of Liquid-Phase Alkylation of Benzene with Ethylene Considering the Process Unsteadiness, Ind. Eng. Chem. Res. 59, 14537–14543. [CrossRef] [Google Scholar]
  • Ivanchina E., Ivashkina E., Dolganova I., Frantsina E., Dolganov I. (2017) Influence of alkylaromatic hydrocarbons on the efficiency of linear alkylbenzene sulfonic acid synthesis, Chem. Eng. J. 329, 250–261. [CrossRef] [Google Scholar]
  • Ivanchina E., Ivashkina E., Frantsina E., Dolganova I., Ivanov S. (2017) Increasing the selectivity of synthesis stages for linear alkyl benzenes, Curr. Org. Synth. 14, 342–352. [CrossRef] [Google Scholar]
  • Ivashkina E., Dolganova I., Dolganov I., Ivanchina E., Nurmakanova A., Bekker A. (2019) Modeling the H2SO4-catalyzed isobutane alkylation with alkenes considering the process unsteadiness, Catal. Today 329, 206–213. [CrossRef] [Google Scholar]
  • Nazarova G., Ivashkina E., Ivanchina E., Oreshina A., Dolganova I., Pasyukova M. (2020) Modeling of the catalytic cracking: Catalyst deactivation by coke and heavy metals, Fuel Process. Technol. 200, 106318. [CrossRef] [Google Scholar]
  • Chuzlov V., Nazarova G., Ivanchina E., Ivashkina E., Dolganova I., Solopova A. (2019) Increasing the economic efficiency of gasoline production: Reducing the quality giveaway and simulation of catalytic cracking and compounding, Fuel Process. Technol. 196, 106139. [CrossRef] [Google Scholar]
  • Ivanchina E.D., Ivashkina E.N., Chuzlov V.A., Belinskaya N.S., Dementyev A.Y. (2020) Formation of the component composition of blended hydrocarbon fuels as the problem of the multi-objective optimization, Chem. Eng. J. 383, 1–9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.