Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 18
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2020093
Published online 26 February 2021
  • dos Santos J.P.L., de Carvalho Lima Lobato A.K., Moraes C., de Lima Cunha A., da Silva G.F., dos Santos L.C.L. (2016) Comparison of different processes for preventing deposition of elemental sulfur in natural gas pipelines: A review, J. Nat. Gas Sci. Eng. 32, 364. [Google Scholar]
  • Pack D.J., Parks D.W., Chesnoy A.B. (2012) Gas pipeline preferential site selection occurrence for elemental sulphur & other particle matter formation & deposition, J. Pet. Sci. Eng. 94–95, 12. [Google Scholar]
  • Edlund D.J., Pledger W.A. (1993) Thermolysis of hydrogen sulfide in a metal-membrane reactor, J. Memb. Sci. 77, 255. [Google Scholar]
  • Syed M., Soreanu G., Falletta P., Béland M. (2006) Removal of hydrogen sulfide from gas streams using biological processes – A review, Can. Biosyst. Eng. 48, 2. [Google Scholar]
  • Eow J.S. (2002) Recovery of sulfur from sour acid gas: A review of the technology, Environ. Prog. 21, 143. [Google Scholar]
  • Benge G., Dew E.G. (2005) Meeting the challenges in design and execution of two high rate acid gas injection wells, in: SPE/IADC Drilling Conference, 23–25 February, Amsterdam, Netherlands, 6 p. [Google Scholar]
  • Li Q., Liu X., Du L., Bai B., Fang Z., Jing M., Li X. (2013) Economics of acid gas injection with comparison to sulfur recovery in China, Energy Procedia 37, 2505. [Google Scholar]
  • El-Bishtawi R., Haimour N. (2004) Claus recycle with double combustion process, Fuel Process. Technol. 86, 245. [Google Scholar]
  • Pietro Reverberi A., Klemeš J.J., Varbanov P.S., Fabiano B. (2016) A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods, J. Clean. Prod. 136, 72. [Google Scholar]
  • Adewale R.A., Berrouk A.S., Dara S. (2015) A process simulation study of hydrogen and sulfur production from hydrogen sulfide using the Fe–Cl hybrid process, J. Taiwan Inst. Chem. Eng. 54, 20. [Google Scholar]
  • Huang H., Yu Y., Chung K.H. (2009) Recovery of hydrogen and sulfur by indirect electrolysis of hydrogen sulfide, Energy Fuels 23, 4420. [Google Scholar]
  • Adewale R., Salem D.J., Berrouk A.S., Dara S. (2016) Simulation of hydrogen production from thermal decomposition of hydrogen sulfide in sulfur recovery units, J. Clean. Prod. 112, 4815. [Google Scholar]
  • Huisman H.M., van der Berg P., Mos R., van Dillen A.J., Geus J.W. (1994) Hydrolysis of carbon sulfides on titania and alumina catalysts; the influence of water, Appl. Catal. A Gen. 115, 157. [Google Scholar]
  • Damanabi A.T., Bahadori F. (2019) A new approach for hydrogen production in Claus sulfur recovery process, J. Sulfur Chem. 40, 137. [Google Scholar]
  • ZareNezhad B. (2009) An investigation on the most important influencing parameters regarding the selection of the proper catalysts for Claus SRU converters, J. Ind. Eng. Chem. 15, 143. [Google Scholar]
  • Signor S., Manenti F., Grottoli M.G., Fabbri P., Pierucci S. (2010) Sulfur recovery units: Adaptive simulation and model validation on an industrial plant, Ind. Eng. Chem. Res. 49, 5714. [Google Scholar]
  • Lins V.F.C., Guimarães E.M. (2007) Failure of a heat exchanger generated by an excess of SO2 and H2S in the sulfur recovery unit of a petroleum refinery, J. Loss Prev. Process Ind. 20, 91. [Google Scholar]
  • ZareNezhad B., Hosseinpour N. (2008) Evaluation of different alternatives for increasing the reaction furnace temperature of Claus SRU by chemical equilibrium calculations, Appl. Therm. Eng. 28, 738. [Google Scholar]
  • Boussetta N., Lanoisellé J.-L., Bedel-Cloutour C., Vorobiev E. (2009) Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments, J. Food Eng. 95, 192. [Google Scholar]
  • Gens T.A. (1994) Decrease in carbonyl sulfide in the feed to Claus converters by shift catalysts, Ind. Eng. Chem. Res. 33, 1654. [Google Scholar]
  • Chardonneaua M., Ibrahim S., Gupta A.K., AlShoaibi A. (2015) Role of toluene and carbon dioxide on sulfur recovery efficiency in a Claus process, Energy Procedia 75, 3071. [Google Scholar]
  • Ibrahim S., Al Shoaibi A., Gupta A.K. (2014) Toluene destruction in thermal stage of Claus reactor with oxygen enriched air, Appl. Energy 115, 1. [Google Scholar]
  • Ibrahim S., Rahman R.K., Raj A. (2017) Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace, Ind. Eng. Chem. Res. 56, 11713. [Google Scholar]
  • Craig B.D., Anderson D.S. (1995) Handbook of corrosion data, ASM International, Materials Park, OH. [Google Scholar]
  • Rahman R.K., Ibrahim S., Raj A. (2016) Oxidative destruction of monocyclic and polycyclic aromatic hydrocarbon (PAH) contaminants in sulfur recovery units, Chem. Eng. Sci. 155, 348. [Google Scholar]
  • Zarei S., Ganji H., Sadi M., Rashidzadeh M. (2016) Thermo-kinetic modeling and optimization of the sulfur recovery unit thermal stage, Appl. Therm. Eng. 103, 1095. [Google Scholar]
  • Asadi S., Pakizeh M., Pourafshari Chenar M. (2011) An investigation of reaction furnace temperatures and sulfur recovery, Front. Chem. Sci. Eng. 5, 362. [Google Scholar]
  • Zagoruiko A.N., Matros Y.S. (2002) Mathematical modelling of Claus reactors undergoing sulfur condensation and evaporation, Chem. Eng. J. 87, 73. [Google Scholar]
  • Clarke D.S., Iyengar J.M., Alkhaldy M., Summers S. (2001) Qatar gas sulfur recovery improvement project, in: Proceedings of the Laurance Reid Gas Conditioning Conference, pp. 85–104. [Google Scholar]
  • Mattsson-Bose K.W., Lyddon L.G. (1997) Using a process simulator to improve sulphur recovery, in: SULPHUR-LONDON-, British Sulphur Publishing, 37 p. [Google Scholar]
  • Monnery W.D., Svrcek W.Y., Behie L.A. (1993) Modelling the modified claus process reaction furnace and the implications on plant design and recovery, Can. J. Chem. Eng. 71, 711. [Google Scholar]
  • Selim H., Ibrahim S., Al Shoaibi A., Gupta A.K. (2013) Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under Claus conditions, Appl. Energy 109, 119. [Google Scholar]
  • Bohme G., Sames J.A. (1999) The seven deadly sins of sulphur recovery, in: International Sulphur’99 Conference, Memorias Sulphur Experts Inc., Calgary, AB, Canada, 1999 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.