Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 85
Number of page(s) 13
Published online 27 November 2020
  • Adams J. (1997) Natural gas salt cavern storage operating pressure determination, in: Technical Meeting/Petroleum Conference of the South Saskatchewan Section, 19–22 October, Regina, Saskatchewan. [Google Scholar]
  • ANSYS Inc. (2012) ANSYS 14.5 mechanical APDL verification manual, Canonsburg, Pennsylvania, USA. [Google Scholar]
  • Bayram F., Bektasoglu I. (2020) Determination of actual dissolution rates from some rock properties in construction of deep salt cavern for natural gas storage, Int. J. Rock Mech. Min. 126, 104183. [CrossRef] [Google Scholar]
  • Belzer B.E., DeVries K.L. (2017) Numerical prediction of tensile casing failure by salt creep for evaluating the integrity of cemented casings of salt caverns, in: SMRI Spring 2017 Technical Conference, 23–26 April 2017, Albuquerque, New Mexico. [Google Scholar]
  • Bérest P., Brouard B. (2003) Safety of salt caverns used for underground storage. Blow out; mechanical instability; seepage; cavern abandonment, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 58, 3, 361–384. [CrossRef] [Google Scholar]
  • Bérest P., Bergues J., Brouard B., Durup J., Guerber B. (2001) A salt cavern abandonment test, Int. J. Rock Mech. Min. 38, 3, 357–368. [CrossRef] [Google Scholar]
  • Bérest P., Karimi-Jafari M., Brouard B. (2007) Thermal effects in salt caverns, in: Proc. SMRI Spring 2007 Conference, 29 April–2 May 2007, Basel, Switzerland. [Google Scholar]
  • Bérest P., Brouard B., Djizanne H., Hévin G. (2014) Thermo-mechanical effects of a rapid depressurization in a gas cavern, Acta Geotech. 1, 9, 181–186. [CrossRef] [Google Scholar]
  • Chen J., Kang Y., Liu W., Fan J., Chemenda A. (2018) Self-healing capacity of damaged rock salt with different initial damage, Geomech. Eng. 15, 1, 615–620. [Google Scholar]
  • Chen J., Lu D., Liu W., Fan J., Jiang D., Yi L., Kang Y. (2020) Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages, J. Energy Storage 27, 101131. [CrossRef] [Google Scholar]
  • Costa A.M., Amaral C.S., Poiate E., Pereira A.M.B., Martha L.F., Gattass M. (2011) Underground storage of natural gas and CO2 in salt caverns in deep and ultra-deep water offshore Brazil, in: 12th ISRM International Congress on Rock Mechanics, October 17–21, 2011, Beijing, PR China, pp. 1659–1664. [Google Scholar]
  • Crotogino F., Huebner S. (2008) Energy storage in salt caverns: Developments and concrete projects for adiabatic compressed air and for hydrogen storage, in: SMRI Spring 2008 Technical Conference, 28–29 April 2008, Porto, Portugal. [Google Scholar]
  • DeVries K.L., Nieland J.D. (1999) Feasibility study for lowering the min. gas pressure in solution-mined caverns based on geomechanical analyses of creep-induced damage and healing, in: SMRI Spring 1999 Meeting, 11–14 April 1999, Las Vegas, Nevada, USA. [Google Scholar]
  • Guo Y., Yang C., Mao H. (2012) Mechanical properties of Jintan mine rock salt under complex stress paths, Int. J. Rock Mech. Min. 56, 54–61. [CrossRef] [Google Scholar]
  • Itasca Consulting Group (2005) Inc FLAC3D version 3.0 users’ manual (2005), Minneapolis, Minnesota, USA. [Google Scholar]
  • Li Y., Liu W., Yang C., Daemen J. (2014) Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer, Int. J. Rock Mech. Min. 69, 39–49. [CrossRef] [Google Scholar]
  • Ma H., Yang C., Li Y., Shi X., Liu J., Wang T. (2015) Stability evaluation of the underground gas storage in rock salts based on new partitions of the surrounding rock, Environ. Earth Sci. 73, 11, 6911–6925. [CrossRef] [Google Scholar]
  • Mahmoudi E., Khaledi K., König D.I.D. (2015) Numerical simulation of deep and shallow energy storage systems in rock salt, in: Aktuelle Forschung in der Bodenmechanik 2015, Springer, Berlin, Heidelberg, Vol. 2015, pp. 69–83. [Google Scholar]
  • Maji V. (2018) Numerical analysis of Shiobara hydropower cavern using practical equivalent approach, J. Rock Mech. Geotech. Eng. 10, 402–410. [CrossRef] [Google Scholar]
  • Ngo D.T., Pellet F.L. (2018) Numerical modeling of thermally-induced fractures in a large rock salt mass, J. Rock Mech. Geotech. Eng. 10, 5, 844–855. [CrossRef] [Google Scholar]
  • Ozarslan A. (2012) Large-scale hydrogen energy storage in salt caverns, Int. J. Hydrogen Energy 37, 19, 14265–14277. [CrossRef] [Google Scholar]
  • Shen B., Shi J., Barton N. (2018) An approximate nonlinear modified Mohr-Coulomb shear strength criterion with critical state for intact rocks, J. Rock Mech. Geotech. Eng. 10, 645–652. [CrossRef] [Google Scholar]
  • Sobolik S., Ehgartner B. (2006) Analysis of shapes for the strategic petroleum reserve, Sandia National Laboratories, Albuquerque, NM, USA. No. SAND 2006-3002. [Google Scholar]
  • Stone H.B.J., Veldhuis I., Richardson R.N. (2009) Underground hydrogen storage in the UK, Geol. Soc. Lond. Special Publ. 313, 1, 217–226. [CrossRef] [Google Scholar]
  • Tecplot Inc. (2013) Tecplot 360 user’s manual (2013), Bellevue, WA, USA. [Google Scholar]
  • Van Sambeek L., Ratigan J., Hansen F. (1993) Dilatancy of rock salt in laboratory test, in: Haimson B.C. (ed), Proceedings, 34th U.S. Symposium on Rock Mechanics, June 27–30, University of Wisconsin-Madison, Madison, WI, Int. J. Rock Mech. Min. Sci. Geo. Abst. 1993, Vol. 30, pp. 735–738. [Google Scholar]
  • Wang T., Yan X., Yang X., Yang H. (2010) Numerical stimulation of min. permitted operating pressure of natural gas storage in bedded salt, in: 5th International Symposium on In-Situ Rock Stress, August 25–27 2010, Beijing, China, pp. 425–428. [Google Scholar]
  • Wang J., Liu X., Song Z., Shao Z. (2015a) An improved maxwell creep model for salt rock, Geomech. Eng. 9, 4, 499–511. [CrossRef] [Google Scholar]
  • Wang T., Yang C., Yan X., Daemen J.J.K. (2015b) Allowable pillar width for bedded rock salt caverns gas storage, J Petrol. Sci. Eng. 127, 433–444. [CrossRef] [Google Scholar]
  • Wang T., Yang C., Ma H., Li Y., Shi X., Li J., Daemen J.J.K. (2016) Safety evaluation of salt cavern gas storage close to an old cavern, Int. J. Rock Mech. Min. 83, 95–106. [CrossRef] [Google Scholar]
  • Wang T., Yang C., Li J., Li J., Shi X., Ma H. (2017) Failure analysis of overhanging blocks in the wall of a gas storage salt cavern: A case study, Rock Mech. Rock Eng. 50, 1, 125–137. [CrossRef] [Google Scholar]
  • Wang T., Ma H., Shi X., Yang C., Zhang N., Li J. (2018a) Salt cavern gas storage in an ultra-deep formation in Hubei, China, Int. J. Rock Mech. Min. 102, 2, 57–70. [CrossRef] [Google Scholar]
  • Wang T., Ding S., Wang H., Yang C., Shi X., Ma H., Daemen J. (2018b) Mathematic modelling of the debrining for a salt cavern gas storage, J. Nat. Gas Sci. Eng. 50, 205–214. [CrossRef] [Google Scholar]
  • Wang T., Li J., Jing G., Zhang Q., Yang C., Daemen J. (2019) Determination of the maximum allowable gas pressure for an underground gas storage salt cavern – a case study of Jintan, China, J. Rock Mech. Geotech. Eng. 11, 2, 251–262. [CrossRef] [Google Scholar]
  • Yang C., Li Y., Chen F. (2009) Bedded salt rock mechanics and engineering, Science Press, Beijing. (in Chinese). [Google Scholar]
  • Yang C., Li Y., Zhou H. (2015a) Failure mechanism and protection of salt caverns for large-scale underground energy storage, Science Press, Beijing. (in Chinese). [Google Scholar]
  • Yang C., Wang T., Li Y., Yang H., Li J., Xu B., Daemen J.J.K. (2015b) Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China, Appl. Energy 137, 467–481. [CrossRef] [Google Scholar]
  • Yang C., Wang T., Qu D., Ma H., Li Y., Shi X., Daemen J.J.K. (2016) Feasibility analysis of using horizontal caverns for underground gas storage: A case study of Yunying salt district, J. Nat. Gas Sci. Eng. 36, 252–266. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.