- Abdelfatah E.R., Kang K., Pournik M., Shiau B., Harwell J., Haroun M.R., Rahman M.M. (2017) Study of nanoparticle adsorption and release in porous media based on the DLVO theory, in: SPE Latin America and Caribbean Petroleum Engineering Conference, 17–19 May, Buenos Aires, Argentina. https://doi.org/10.2118/185484-ms. [Google Scholar]
- Abraham W.H. (1966) Transient polycondensation calculations-an analytical solution, Chem. Eng. Sci. 21, 327–336. https://doi.org/10.1016/0009-2509(66)85025-X. [Google Scholar]
- Agarwal V.K. (2012) Stability study of important Metal Organic Frameworks (MOFs) and a review on their gas adsorption properties. [Google Scholar]
- Ahmadi M.A., Shadizadeh S.R. (2015) Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: Static and dynamic conditions, Fuel 159, 15–26. https://doi.org/10.1016/j.fuel.2015.06.035. [CrossRef] [Google Scholar]
- Ahmadi M.A., Zendehboudi S., Shafiei A., James L. (2012) Nonionic surfactant for enhanced oil recovery from carbonates: Adsorption kinetics and equilibrium, Ind. Eng. Chem. Res. 51, 9894–9905. https://doi.org/10.1021/ie300269c. [Google Scholar]
- Ahmadpour A., Wang K., Do D.D. (1998) Comparison of models on the prediction of binary equilibrium data of activated carbons, AIChE J. 44, 740–752. https://doi.org/10.1002/aic.690440322. [Google Scholar]
- An C., Fang Y., Liu S., Alfi M., Yan B., Wang Y., Killough J. (2017) Impacts of matrix shrinkage and stress changes on permeability and gas production of organic-rich shale reservoirs, in: Soc. Pet. Eng. – SPE Reservoir Characterisation and Simulation Conference and Exhibition 2017, pp. 537–555. [Google Scholar]
- An C., Killough J., Mi L. (2019) Stress-dependent permeability of organic-rich shale reservoirs: Impacts of stress changes and matrix shrinkage, J. Pet. Sci. Eng. 172, 1034–1047. https://doi.org/10.1016/j.petrol.2018.09.011. [Google Scholar]
- Anderson R.B. (1946) Modifications of the Brunauer, Emmett and Teller equation, J. Am. Chem. Soc. 68, 686–691. https://doi.org/10.1021/ja01208a049. [Google Scholar]
- Arain Z.U.A., Al-Anssari S., Ali M., Memon S., Bhatti M.A., Lagat C., Sarmadivaleh M. (2019) Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition, Petroleum. https://doi.org/10.1016/j.petlm.2019.09.001. [Google Scholar]
- Aranovich G.L. (1991) New polymolecular adsorption isotherm, J. Colloid Interface Sci. 141, 30–43. https://doi.org/10.1016/0021-9797(91)90299-N. [Google Scholar]
- Astakhov V.A., Dubinin M.M. (1971) Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents – Communication 3. Zeolites with large cavities and a substantial number of adsorption centers, Bull. Acad. Sci. USSR Div. Chem. Sci. 20, 13–16. https://doi.org/10.1007/BF00849309. [CrossRef] [Google Scholar]
- Ayawei N., Ebelegi A., Wankasi D. (2017) Modelling and interpretation of adsorption isotherms, J. Chem. 2017, 3039817. https://doi.org/10.1155/2017/3039817. [Google Scholar]
- Aybar U. (2014) Investigation of analytical models incorporating geomechanical effects on production performance of hydraulically and naturally fractured unconventional reservoirs, Geology. [Google Scholar]
- Azizian S., Bashiri H. (2009) A new isotherm for multisite occupancy adsorption of binary gaseous mixtures, Langmuir 25, 2309–2312. https://doi.org/10.1021/la803675h. [CrossRef] [PubMed] [Google Scholar]
- Bae J.S., Bhatia S.K. (2006) High-pressure adsorption of methane and carbon dioxide on coal, Energy and Fuels 20, 2599–2607. https://doi.org/10.1021/ef060318y. [CrossRef] [Google Scholar]
- Bai B., Grigg R.B., Liu Y., Zeng Z. (2005) Adsorption kinetics of surfactant used in CO2-Foam flooding onto berea sandstone, Proc. – SPE Annu. Tech. Conf. Exhib. 1951–1957 Society of Petroleum Engineers. https://doi.org/10.2523/95920-ms. [Google Scholar]
- Bai R., Deng J., Yang R.T. (2003) Improved multisite langmuir model for mixture adsorption using multiregion adsorption theory, Langmuir 19, 2776–2781. https://doi.org/10.1021/la020838v. [Google Scholar]
- Belhaj A.F., Elraies K.A., Mahmood S.M., Zulkifli N.N., Akbari S., Hussien O.S.E. (2020) The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review, J. Pet. Explor. Prod. Technol. 10, 125–137. https://doi.org/10.1007/s13202-019-0685-y. [Google Scholar]
- Bertier P., Schweinar K., Stanjek H., Ghanizadeh A., Clarkson C.R., Busch A., Kampman N., Prinz D., Amann-Hildenbrand A., Krooss B.M., Pipich V. (2016) On the use and abuse of N2 physisorption for the characterization of the pore structure of shales, Fill. Gaps – from Microsc. Pore Struct. to Transp. Prop. Shales 151–161. https://doi.org/10.1346/cms-wls-21-12. [Google Scholar]
- Bhuyan D., Lake L.W., Pope G.A. (1990) Mathematical Modeling of High-pH Chemical Flooding, SPE Reserv. Eng. 5, 213–220. https://doi.org/10.2118/17398-PA. [CrossRef] [Google Scholar]
- Braconnier B., Preux C., Flauraud É., Tran Q.H., Berthon C. (2017) An analysis of physical models and numerical schemes for polymer flooding simulations, Comput. Geosci. 21, 1267–1279. https://doi.org/10.1007/s10596-017-9637-0. [Google Scholar]
- Brunauer S. (1943) The Adsorption of Gases and Vapors. Volume I: Physical Adsorption, Princeton University Press. [Google Scholar]
- Brunauer S., Deming L.S., Deming W.E., Teller E. (1940) On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc. 62, 1723–1732. https://doi.org/10.1021/ja01864a025. [Google Scholar]
- Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023. [Google Scholar]
- Burcik E.J. (1965) A note on the flow behaviour of polyacrylamide solutions in porous media, Prod. Mon. 29, 6. [Google Scholar]
- Bustin R.M., Bustin A.M.M., Cui X., Ross D.J.K., Pathi V.S.M. (2008) Impact of shale properties on pore structure and storage characteristics, in: Society of Petroleum Engineers – Shale Gas Production Conference, 2008, pp. 32–59. https://doi.org/10.2118/119892-ms. [Google Scholar]
- Celik M., Somasundaran P. (1980) Wettability of reservoir minerals by flotation and correlation with surfactant adsorption, in: SPE Oilfield and Geothermal Chemistry Symposium, 28–30 May, Stanford, California, Society of Petroleum Engineers. https://doi.org/10.2118/9002-MS. [Google Scholar]
- Chen J., Loo L.S., Wang K. (2011) An Ideal Absorbed Solution Theory (IAST) study of adsorption equilibria of binary mixtures of methane and ethane on a templated carbon, J. Chem. Eng. Data 56, 1209–1212. https://doi.org/10.1021/je101099c. [Google Scholar]
- Chen L., Jiang Z., Liu K., Ji W., Wang P., Gao F., Hu T. (2017) Application of Langmuir and Dubinin-Radushkevich models to estimate methane sorption capacity on two shale samples from the Upper Triassic Chang 7 Member in the southeastern Ordos Basin, China. Energy Explor. Exploit. 35, 122–144. https://doi.org/10.1177/0144598716684309. [CrossRef] [Google Scholar]
- Cheraghian G., Khalili Nezhad S.S., Kamari M., Hemmati M., Masihi M., Bazgir S. (2014) Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2, Int. Nano Lett. 4, 114. https://doi.org/10.1007/s40089-014-0114-7. [Google Scholar]
- Cho Y., Apaydin O.G., Ozkan E. (2013) Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production, SPE Reserv. Eval. Eng. 16, 216–228. https://doi.org/10.2118/159801-PA. [CrossRef] [Google Scholar]
- Christopher R.H., Middleman S. (1965) Power-law flow through a packed tube, Ind. Eng. Chem. Fundam. 4, 422–426. https://doi.org/10.1021/i160016a011. [CrossRef] [Google Scholar]
- Cohen Y., Christ F.R. (1986) Polymer retention and adsorption in the flow of polymer solutions through porous media, SPE Reserv. Eng. Soc. Pet. Eng. 1, 113–118. https://doi.org/10.2118/12942-PA. [CrossRef] [Google Scholar]
- Cui L., Ma K., Abdala A.A., Dhabi A., Lu L.J., Tanakov I., Biswal S.L., Hirasaki G.J. (2015) Adsorption of a switchable cationic surfactant on natural carbonate minerals, SPE J. 70–78. https://doi.org/10.2118/169040-pa. [CrossRef] [Google Scholar]
- Curbelo F.D.S., Garnica A.I.C., Leite D.F.Q., Carvalho A.B., Silva R.R., Paiva E.M. (2020) Study of Enhanced Oil Recovery and Adsorption Using Glycerol in Surfactant Solution, Energies 13, 3135. https://doi.org/10.3390/en13123135. [Google Scholar]
- Curtis M.E., Ambrose R.J., Sondergeld C.H., Rai C.S. (2010) Structural characterization of gas shales on the micro- and nano-scales, in: Canadian Unconventional Resources and International Petroleum Conference, 19–21 October, Calgary, Alberta, Canada, Society of Petroleum Engineers, pp. 1933–1947. https://doi.org/10.2118/137693-ms. [Google Scholar]
- Dang T.Q.C., Chen Z., Nguyen T.B.N., Bae W. (2014) Investigation of isotherm polymer adsorption in porous media, Pet. Sci. Technol. 32, 1626–1640. https://doi.org/10.1080/10916466.2010.547910. [Google Scholar]
- Dauben D.L., Menzie D.E. (1967) Flow of polymer solutions through porous media, J. Pet. Technol. 19, 1065–1073. https://doi.org/10.2118/1688-PA. [CrossRef] [Google Scholar]
- Dawson R., Lantz R.B. (1972) Inaccessible pore volume in polymer flooding, Soc. Pet. Eng. J. 12, 448–452. https://doi.org/10.2118/3522-PA. [CrossRef] [Google Scholar]
- de Boer J.H. (1953) The dynamical character of adsorption, Clarendon Press, Oxford. [Google Scholar]
- Deem R.L., Ali S.M.F. (1968) Adsorption and Flow of Multiple Tracers in Porous Media, J. Can. Pet. Technol. 7, 60–65. https://doi.org/10.2118/68-02-06. [CrossRef] [Google Scholar]
- Ding W., Liu X., Song L., Li Q., Zhu Q., Zhu H., Hu F., Luo Y., Zhu L., Li H. (2015) An approach to estimate the position of the shear plane for colloidal particles in an electrophoresis experiment, Surf. Sci. 632, 50–59. https://doi.org/10.1016/j.susc.2014.08.024. [Google Scholar]
- Dominguez J.G., Willhite G.P. (1977) Retention and flow characteristics of polymer solutions in porous media, Soc. Pet. Eng. J. 17, 111–121. https://doi.org/10.2118/5835-PA. [CrossRef] [Google Scholar]
- Dubinin M.M., Radushkevich L.V. (1947) Equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. USSR Phys. Chem. Sect. 55, 331–337. [Google Scholar]
- Fianu J., Gholinezhad J., Hassan M. (2019a) Comparison of single, binary and temperature-dependent adsorption models based on error function analysis, J. Oil Gas Petrochem. Sci. 2, 77– 91. https://doi.org/10.30881/jogps.00027. [Google Scholar]
- Fianu J., Gholinezhad J., Hassan M. (2019b) Application of temperature-dependent adsorption models in material balance calculations for unconventional gas reservoirs, Heliyon 5, e01721. https://doi.org/10.1016/j.heliyon.2019.e01721. [Google Scholar]
- Flory P.J. (1953) Principles of polymer chemistry, Cornell University Press. https://doi.org/10.1126/science.119.3095.555-a. [Google Scholar]
- Freundlich H. (1909) Kapillarchemie, eine Darstellung der Chemie der Kolloide und verwandter Gebiete, Akademische Verlagsgesellschaft. [Google Scholar]
- Fritz W., Schluender E.U. (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon, Chem. Eng. Sci. 29, 1279–1282. https://doi.org/10.1016/0009-2509(74)80128-4. [Google Scholar]
- Gil A., Grange P. (1996) Application of the Dubinin-Radushkevich and Dubinin-Astakhov equations in the characterization of microporous solids, Colloids Surf. A Physicochem. Eng. Asp. 113, 39–50. https://doi.org/10.1016/0927-7757(96)81455-5. [Google Scholar]
- Glover C.J., Puerto M.C., Maerker J.M., Sandvik E.L. (1979) Surfactant phase behavior and retention in porous media, Soc. Pet. Eng. AIME J. 19, 183–193. [CrossRef] [Google Scholar]
- Gogarty W.B. (1967) Mobility Control With Polymer Solutions, Soc. Pet. Eng. J. 7, 161–173. https://doi.org/10.2118/1566-b. [CrossRef] [Google Scholar]
- Grigg R.B., Mikhalin A.A. (2007) Effects of flow conditions and surfactant availability on adsorption, in: Proceedings – SPE International Symposium on Oilfield Chemistry, pp. 450–456. https://doi.org/10.2523/106205-ms. [Google Scholar]
- Gruesbeck C., Collins R.E. (1982) Entrainment and deposition of fine particles in porous media, Soc. Pet. Eng. J. 22, 847–856. https://doi.org/10.2118/8430-PA. [CrossRef] [Google Scholar]
- Guggenheim E. (1966) Application of statistical mechanics, Clarendon Press/Clarendon University Press, London. [Google Scholar]
- Guzman K.A.D., Finnegan M.P., Banfield J.F. (2006) Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40, 7688–7693. https://doi.org/10.1021/es060847g. [Google Scholar]
- Hall F.E., Chunhe Z., Gasem K.A.M., Robinson R.L., Dan Y. (1994) Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet fruitland coal, in: SPE Eastern Regional Meeting, Society of Petroleum Engineers. https://doi.org/10.2118/29194-MS. [Google Scholar]
- Halsey G. (1952) The Role of Surface Heterogeneity in Adsorption, Adv. Catal. 4, 259–269. https://doi.org/10.1016/S0360-0564(08)60616-1. [Google Scholar]
- Hematfar V., Maini B.B., Chen Z. (2013) Experimental investigation of the impact of asphaltene adsorption on two phase flow in porous media, SPE - Eur. Form. Damage Conf. Proceedings, EFDC 2, 947–956. [Google Scholar]
- Hill A. (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves, BibSonomy J. Physiol 40, i–vii. [CrossRef] [Google Scholar]
- Hirasaki G.J., Pope G.A. (1974) Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media, Soc. Pet. Eng. J. 14, 337–346. https://doi.org/10.2118/4026-PA. [CrossRef] [Google Scholar]
- Huan-Zhi Z., Yan-Qing H. (2010) Resource potential and development status of global shale, Gas Oil Forum 6, 53–59. [Google Scholar]
- Huber U., Stoeckli F., Houriet J.P. (1978) A generalization of the Dubinin-Radushkevich equation for the filling of heterogeneous micropore systems in strongly activated carbons, J. Colloid Interface Sci. 67, 195–203. https://doi.org/10.1016/0021-9797(78)90002-4. [Google Scholar]
- Hutson N.D., Yang R.T. (1997) Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation, Adsorption 3, 189–195. https://doi.org/10.1007/BF01650130. [CrossRef] [Google Scholar]
- Idris M.N., Kadafur I.B. (2015) Experimental studies on selected nano-particles using infrared spectrometry, Analysis 1, 124–137. [Google Scholar]
- Jennings R.R., Rogers J.H., West T.J. (1971) Factors influencing mobility control by polymer solutions, J. Pet. Technol. 23, 391–401. https://doi.org/10.2118/2867-PA. [CrossRef] [Google Scholar]
- Joekar-Niasar V., Schreyer L., Sedighi M., Icardi M., Huyghe J. (2019) Coupled processes in charged porous media: from theory to applications, Transp. Porous Media 32, 183–214. https://doi.org/10.1007/s11242-019-01257-3. [Google Scholar]
- Ju B., Fan T. (2009) Experimental study and mathematical model of nanoparticle transport in porous media, Powder Technol. 192, 195–202. https://doi.org/10.1016/j.powtec.2008.12.017. [Google Scholar]
- Ju B., Fan T., Li Z. (2012) Improving water injectivity and enhancing oil recovery by wettability control using nanopowders, J. Pet. Sci. Eng. 86–87, 206–216. https://doi.org/10.1016/j.petrol.2012.03.022. [Google Scholar]
- Kapoor A., Ritter J.A., Yang R.T. (1989) On the Dubinin—Radushkevich equation for adsorption in microporous solids in the Henry’s Law Region, Langmuir 5, 1118–1121. https://doi.org/10.1021/la00088a043. [Google Scholar]
- Kapoor A., Yang R.T. (1989) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents, Gas Sep. Purif. 3, 187–192. https://doi.org/10.1016/0950-4214(89)80004-0. [CrossRef] [Google Scholar]
- Khan A.R., Al-Waheab I.R., Al-Haddad A. (1996) A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution, Environ. Technol. (United Kingdom) 17, 13–23. https://doi.org/10.1080/09593331708616356. [Google Scholar]
- Khormali A., Sharifov A.R., Torba D.I. (2018) Experimental and modeling study of asphaltene adsorption onto the reservoir rocks, Pet. Sci. Technol. 36, 1482–1489. https://doi.org/10.1080/10916466.2018.1496116. [Google Scholar]
- Krumrine P.H., Falcone J.S., Campbell T.C. (1982) Surfactant flooding – 2. The effect of alkaline additives on permeability and sweep efficiency, Soc. Pet. Eng. J. 22, 983–992. https://doi.org/10.2118/9811-PA. [CrossRef] [Google Scholar]
- Landes S.H. (1961) Refinements in adsorption processing, in: Fall Meeting of the Society of Petroleum Engineers of AIME, 8–11 October, Dallas, Texas. [Google Scholar]
- Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403. https://doi.org/10.1021/ja02242a004. [Google Scholar]
- Li S., Hadia N.J., Lau H.C., Torsæter O., Stubbs L.P., Ng Q.H. (2018) Silica nanoparticles suspension for enhanced oil recovery: Stability behavior and flow visualization, in: Soc. Pet. Eng. SPE Eur. Featur. 80th EAGE Conf. Exhib. 2018. https://doi.org/10.2118/190802-ms. [Google Scholar]
- Li S., Torsæter O. (2015) Experimental Investigation of the influence of nanoparticles adsorption and transport on wettability alteration for oil wet Berea sandstone, in: SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Society of Petroleum Engineers (SPE), pp. 229–244. https://doi.org/10.2118/172539-ms. [Google Scholar]
- Li S., Torsæter O., Lau H.C., Hadia N.J., Stubbs L.P. (2019) The impact of nanoparticle adsorption on transport and wettability alteration in water-wet berea sandstone: An experimental study, Front. Phys. 7, 74. https://doi.org/10.3389/fphy.2019.00074. [Google Scholar]
- Liu Y., Grigg R.B., Svec R.K. (2006) Foam mobility and adsorption in carbonate core, Proc. – SPE Symp. Improv. Oil Recover. 2, 737–744. [Google Scholar]
- Lu X.C., Li F.C., Watson A.T. (1995) Adsorption measurements in devonian shales, Fuel 74, 4, 599–603. [CrossRef] [Google Scholar]
- Lowell S., Shields J.E., Lowell S., Shields J.E. (1991) Adsorption isotherms, in: Powder Surface Area and Porosity, Springer, Netherlands, pp. 11–13. https://doi.org/10.1007/978-94-015-7955-1_3. [Google Scholar]
- Mannhardt K., Novosad J.J., Jha K.N.N. (1994) Adsorption of foam-forming surfactants in Berea sandstone, J. Can. Pet. Technol. 33. https://doi.org/10.2118/94-02-04. [CrossRef] [Google Scholar]
- Marshall R.J., Metzner A.B. (1967) Flow of viscoelastic fluids through porous media, Ind. Eng. Chem. Fundam. 6, 393–400. https://doi.org/10.1021/i160023a012. [CrossRef] [Google Scholar]
- Masel R.I. (1996) Principles of adsorption and reaction on solid surfaces, John Wiley & Sons Inc. [Google Scholar]
- McMillan W.G., Teller E. (1951) The assumptions of the B.E.T. theory, J. Phys. Colloid Chem. 55, 17–20. https://doi.org/10.1021/j150484a003. [CrossRef] [Google Scholar]
- Metzner A.B. (1977) Polymer solution and fiber suspension rheology and their relationship to turbulent drag reduction, Phys. Fluids 20, S145. https://doi.org/10.1063/1.861723. [CrossRef] [Google Scholar]
- Meyers K.O., Salter S.J. (1980) Effect of oil brine ratio on surfactant adsorption from microemulsions, Society of Petroleum Engineers of AIME, SPE. [Google Scholar]
- Mirchi V., Saraji S., Goual L., Piri M. (2016) Experimental investigation of surfactant flooding in shale oil reservoirs: Dynamic interfacial tension, adsorption, and wettability, in: Society of Petroleum Engineers – SPE/AAPG/SEG Unconventional Resources Technology Conference, pp. 1–6. https://doi.org/10.15530/urtec-2014-1913287. [Google Scholar]
- Mungan N. (1969) Rheology and adsorption of aqueous polymer solutions, J. Can. Pet. Technol. 8, 45–50. [CrossRef] [Google Scholar]
- Myers A.L., Prausnitz J.M. (1965) Thermodynamics of mixed-gas adsorption, AIChE J. 11, 121–127. https://doi.org/10.1002/aic.690110125. [Google Scholar]
- Nitta T., Kuro-Oka M., Katayama T. (1984a) An adsorption isotherm of multi-site occupancy model for heterogeneous surface, J. Chem. Eng. Japan 17, 45–52. https://doi.org/10.1252/jcej.17.45. [CrossRef] [Google Scholar]
- Nitta T., Shigetomi T., Kuro-Oka M., Katayama T. (1984b) An adsorption isotherm of multi-site occupancy model for homogeneous surface, J. Chem. Eng. Japan 17, 39–45. https://doi.org/10.1252/jcej.17.39. [CrossRef] [Google Scholar]
- Ogunberu A.L., Asghari K. (2005) Water permeability reduction under flow-induced polymer adsorption, J. Can. Pet. Technol. 44, 56–61. https://doi.org/10.2118/05-11-06. [CrossRef] [Google Scholar]
- Ohshima H. (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles, J. Colloid Interface Sci. 168, 1, 269–271. https://doi.org/10.1006/jcis.1994.1419. [Google Scholar]
- Ozkan E., Raghavan R.S., Apaydin O.G. (2010) Modeling of fluid transfer from shale matrix to fracture network, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. https://doi.org/10.2118/134830-MS. [Google Scholar]
- Radke C.J., Prausnitz J.M. (1972) Thermodynamics of multi-solute adsorption from dilute liquid solutions, AIChE J. 18, 761–768. https://doi.org/10.1002/aic.690180417. [Google Scholar]
- Raghavan R., Chin L.Y. (2004) Productivity changes in reservoirs with stress-dependent permeability, SPE Reserv. Eval. Eng. 7, 308–315. https://doi.org/10.2118/88870-PA. [CrossRef] [Google Scholar]
- Ramirez W., Shuler P., Friedman F. (1980) Convection, dispersion, and adsorption of surfactants in porous media, Soc. Pet. Eng. J. 20, 9. https://doi.org/10.2118/7951-PA. [CrossRef] [Google Scholar]
- Rani S., Prusty B.K., Padmanabhan E., Pal S.K. (2019) Applicability of various adsorption isotherm models on adsorption of methane and CO2 on Indian shales, Environ. Prog. Sustain. Energy 38, 13222. https://doi.org/10.1002/ep.13222. [Google Scholar]
- Redlich O., Peterson D.L. (1959) A useful adsorption isotherm, J. Phys. Chem. 63, 6, 1024. https://doi.org/10.1021/j150576a611. [Google Scholar]
- Revil A., Schwaeger H., Cathles L.M., Manhardt P.D. (1999) Streaming potential in porous media: 2. Theory and application to geothermal systems, J. Geophys. Res. Solid Earth 104, 20033–20048. https://doi.org/10.1029/1999jb900090. [Google Scholar]
- Rexer T.F.T., Benham M.J., Aplin A.C., Thomas K.M. (2013) Methane adsorption on shale under simulated geological temperature and pressure conditions, Energy Fuels 27, 3099–3109. https://doi.org/10.1021/ef400381v. [Google Scholar]
- Romanielo L.L., Arvelos S., Tavares F.W., Rajagopal K. (2014) A modified multi-site occupancy model: evaluation of azeotropelike behavior in adsorption, Adsorption 21, 3–16. https://doi.org/10.1007/s10450-014-9644-6. [CrossRef] [Google Scholar]
- Rowland F.W., Eirich F.R. (1966) Flow rates of polymer solutions through porous disks as a function of solute. I. method, J. Polym. Sci. Part A-1 Polym. Chem. 4, 2033–2040. https://doi.org/10.1002/pol.1966.150040901. [CrossRef] [Google Scholar]
- Ruthven D.M. (1984) Principles of adsorption & adsorption processes, Wiley, New York. [Google Scholar]
- Saadi R., Saadi Z., Fazaeli R., Fard N.E. (2015) Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 32, 787–799. https://doi.org/10.1007/s11814-015-0053-7. [Google Scholar]
- Savins J.G. (1969) Non-newtonian flow through porous media, Ind. Eng. Chem. 61, 18–47. https://doi.org/10.1021/ie50718a005. [Google Scholar]
- Sepehri M., Moradi B., Emamzadeh A., Mohammadi A.H. (2019) Experimental study and numerical modeling for enhancing oil recovery from carbonate reservoirs by nanoparticle flooding, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 5. https://doi.org/10.2516/ogst/2018080. [CrossRef] [Google Scholar]
- ShamsiJazeyi H., Hirasaki G.J., Verduzco R. (2013) Sacrificial agent for reducing adsorption of anionic surfactants, in: Proceedings – SPE International Symposium on Oilfield Chemistry, pp. 214–229. https://doi.org/10.2118/164061-ms. [Google Scholar]
- Sheng J.J. (2011) Modern chemical enhanced oil recovery, Elsevier Inc. https://doi.org/10.1016/C2009-0-20241-8. [Google Scholar]
- Sips R. (1948) On the structure of a catalyst surface, J. Chem. Phys. 16, 490–495. https://doi.org/10.1063/1.1746922. [Google Scholar]
- Smith F.W. (1970) The behavior of partially hydrolyzed polyacrylamide solutions in porous media, J. Pet. Technol. 22, 148–156. https://doi.org/10.2118/2422-pa. [CrossRef] [Google Scholar]
- Sorbie K.S. (1991) Introduction to polymer flooding, in: Polymer-Improved Oil Recovery, Springer, Netherlands, pp. 1–5. https://doi.org/10.1007/978-94-011-3044-8_1. [Google Scholar]
- Sullivan R.B., Rushing J.A., Bachman R.C., Settari A., Conway M.W., Barree R.D. (2006) Evaluation of nonlinear fracture relative permeabilities and their impact on waterfrac performance in tight gas sands, in: Proc. – SPE Int. Symp. Form. Damage Control 2006, 15–17 February, Lafayette, Louisiana, USA, pp. 731–738. [Google Scholar]
- Suresh R., Kuznetsov O., Agrawal D., Darugar Q., Khabashesku V. (2018) Reduction of surfactant adsorption in porous media using silica nanoparticles, Proc. Annu. Offshore Technol. Conf. 2, 984–992. [Google Scholar]
- Suwanayuen S., Danner R.P. (1980a) Vacancy solution theory of adsorption from gas mixtures, AIChE J. 26, 76–83. https://doi.org/10.1002/aic.690260113. [Google Scholar]
- Suwanayuen S., Danner R.P. (1980b) A gas adsorption isotherm equation based on vacancy solution theory, AIChE J. 26, 68–76. https://doi.org/10.1002/aic.690260112. [Google Scholar]
- Swenson H., Stadie N.P. (2019) Langmuir’s theory of adsorption: A centennial review, Langmuir 35, 5409–5426. https://doi.org/10.1021/acs.langmuir.9b00154. [CrossRef] [PubMed] [Google Scholar]
- Szabo M.T. (1975) Laboratory investigations of factors influencing polymer flood performance, Soc. Pet. Eng. AIME J. 15, 338–346. https://doi.org/10.2118/4669-PA. [CrossRef] [Google Scholar]
- Tabatabal A., Gonzalez M.V., Harwell J.H., Scamehorn J.F. (1993) Reducing surfactant adsorption in carbonate reservoirs, SPE Reserv. Eng. 8, 117–122. https://doi.org/10.2118/24105-pa. [CrossRef] [Google Scholar]
- Tan J., Weniger P., Krooss B., Merkel A., Horsfield B., Zhang J., Boreham C.J., Graas G.V., Tocher B.A. (2014) Shale gas potential of the major marine shale formations in the upper Yangtze platform, South China, Part II: methane sorption capacity, Fuel 129, 204–218. [CrossRef] [Google Scholar]
- Temkin M., Pyzhev V. (1940) Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochimica URSS 12, 327–356. [Google Scholar]
- Toth J. (1971) State equation of the solid gas interface layer, Acta Chim. (Academiae Sci) Hungaricae 69, 311–317. [Google Scholar]
- Trogus F.J., Sophany T., Schechter R.S., Wade W.H. (1977) Static and dynamic adsorption of anionic and nonionic surfactants, Soc. Pet. Eng. AIME J. 17, 337–344. https://doi.org/10.2118/6004-pa. [CrossRef] [Google Scholar]
- Tsau J.S., Syahputra A.E., Grigg R.B. (2000) Economic evaluation of surfactant adsorption in CO2 foam application, in: SPE/DOE Improved Oil Recovery Symposium, 3–5 April, Tulsa, Oklahoma. https://doi.org/10.2523/59365-ms. [Google Scholar]
- Tumba J., Agi A., Gbadamosi A., Junin R., Abbas A., Rajaei K., Gbonhinbor J. (2019) Lignin as a potential additive for minimizing surfactant adsorption on clay minerals in different electrolyte concentration, in: Society of Petroleum Engineers – SPE Nigeria Annual International Conference and Exhibition 2019, NAIC 2019, pp. 1–23. https://doi.org/10.2118/198713-MS. [Google Scholar]
- Volmer M.A., Mahnert P. (1925) Solution of solid substances in liquid surfaces and the characteristics of layers thus produced, Z. Phys. Chem 115, 253. [Google Scholar]
- Walton K.S., Sholl D.S. (2015) Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory, AIChE J. 61, 2757–2762. https://doi.org/10.1002/aic.14878. [Google Scholar]
- Wang J., Han M., Fuseni A.B., Cao D. (2015) Surfactant adsorption in Surfactant-Polymer flooding for carbonate reservoirs, in: SPE Middle East Oil and Gas Show and Conference, MEOS Proceedings, pp. 1736–1746. https://doi.org/10.2118/172700-ms. [Google Scholar]
- Wang W., Yuan B., Su Y., Wang K., Jiang M., Moghanloo R.G., Rui Z. (2016a) Nanoparticles adsorption, straining and detachment behavior and its effects on permeability of Berea cores: Analytical model and lab experiments, in: Proceedings – SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (SPE). https://doi.org/10.2118/181285-ms. [Google Scholar]
- Wang Y., Zhu Y., Liu S., Zhang R. (2016b) Methane adsorption measurements and modeling for organic-rich marine shale samples, Fuel 172, 301–309. https://doi.org/10.1016/j.fuel.2015.12.074. [CrossRef] [Google Scholar]
- Wang Z., Li Y., Guo P., Meng W. (2016c) Analyzing the adaption of different adsorption models for describing the shale gas adsorption law, Chem. Eng. Technol. 39, 1921–1932. https://doi.org/10.1002/ceat.201500617. [Google Scholar]
- White J. (2012) Computational fluid dynamics modelling and experimental study on a single silica gel type B, Model. Simul. Eng. 2012, 9. https://doi.org/10.1155/2012/598479. [Google Scholar]
- Willhite G.P., Dominguez J.G. (1977) Mechanisms of polymer retention in porous media, in Improved Oil Recovery by Surfactant and Polymer Flooding, D.O. Shah, R.S. Schechter (eds), Academic Press Inc., pp. 511–554. [CrossRef] [Google Scholar]
- Xiao-Chun Lu, Li Fan-Chang, Watson A.T. (1995) Adsorption studies of natural gas storage in Devonian shales, SPE Form. Eval. 10, 109–113. https://doi.org/10.2118/26632-pa. [CrossRef] [Google Scholar]
- Yan B., Wang Y., Killough J.E. (2016) Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs, Comput. Geosci. 20, 69–91. https://doi.org/10.1007/s10596-015-9548-x. [Google Scholar]
- Yin G., Grigg R.B., Svec Y. (2009) Oil recovery and surfactant adsorption during CO2-foam flooding, Offshore Technol. Conf. Proc. 1, 106–119. [Google Scholar]
- Yu J., An C., Mo D., Liu N., Lee R. (2012) Study of adsorption and transportation behavior of nanoparticles in three different porous media, Proc. - SPE Symp. Improv. Oil Recover. 1, pp. 311–323. [Google Scholar]
- Yu W., Sepehrnoori K., Patzek T.W. (2016) Modeling gas adsorption in marcellus shale with Langmuir and bet isotherms. SPE J. Soc. Pet. Eng. 589–600. https://doi.org/10.2118/170801-PA. [Google Scholar]
- Zhang J., Tang Y., Chen D. (2019) Prediction of methane adsorption content in continental coal-bearing shale reservoir using SLD model, Pet. Sci. Technol. 37, 1839–1845. https://doi.org/10.1080/10916466.2019.1610773. [Google Scholar]
- Zhang T. (2012) Modeling of nanoparticle transport in porous media. Transp. Porous Media 362. [Google Scholar]
- Zhang T., Ellis G.S., Ruppel S.C., Milliken K., Yang R. (2012) Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems, Org. Geochem. 47, 120–131. [Google Scholar]
- Zhang T., Murphy M., Yu H., Bagaria H.G., Yoon K.Y., Nielson B.M., Bielawski C.W., Johnston K.P., Huh C., Bryant S.L. (2013) Investigation of nanoparticle adsorption during transport in porous media, in: Proceedings - SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers 3161–3180. https://doi.org/10.2118/166346-ms. [Google Scholar]
- Zhang T., Murphy M.J., Yu H., Bagaria H.G., Yoon K.Y., Neilson B.M., Bielawski C.W., Johnston K.P., Huh C., Bryant S.L. (2015) Investigation of nanoparticle adsorption during transport in porous media, SPE J. 20, 667–677. https://doi.org/10.2118/166346-PA. [CrossRef] [Google Scholar]
- Zhong X., Pu H., Zhou Y., Zhao J.X. (2019) Static adsorption of surfactants on Bakken rock surfaces in high temperature, high salinity conditions, in: Proceedings – SPE International Symposium on Oilfield Chemistry, pp. 1–10. https://doi.org/10.2118/193589-ms. [Google Scholar]
- Zhou W., Dong M., Liu Q., Xiao H. (2005) Experimental investigation of surfactant adsorption on sand and oil-water interface in heavy oil/water/sand systems, in: Canadian International Petroleum Conference, 7–9 June, Calgary, Alberta. [Google Scholar]
- Zhou X., Han M., Fuseni A.B., Yousef A.A. (2012) Adsorption-desorption of an amphoteric surfactant onto permeable carbonate rocks, SPE – DOE Improv. Oil Recover. Symp. Proc. 1, 552–572. https://doi.org/10.2118/153988-ms. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Article Number | 77 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.2516/ogst/2020063 | |
Published online | 29 October 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.