Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 27
Number of page(s) 20
Published online 05 May 2020
  • International Energy Agency, Market Report Series: Gas 2019, (accessed 16 November 2019). [Google Scholar]
  • Castillo L., Dahouk M.M., Di Scipio S., Dorao C.A. (2013) Conceptual analysis of the precooling stage for LNG processes, Energy Convers. Manage. 66, 41–47. [CrossRef] [Google Scholar]
  • Lim W., Lee I., Tak K., Cho J.H., Ko D., Moon I. (2014) Efficient configuration of a natural gas liquefaction process for energy recovery, Ind. Eng. Chem. Res. 53, 5, 1973–1985. [Google Scholar]
  • Ghorbani B., Hamedi M.H., Amidpour M., Mehrpooya M. (2016) Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)), Energy 115, 88–106. [CrossRef] [Google Scholar]
  • Khan M.S., Karimi I.A., Wood D.A. (2017) Retrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: A review, J. Nat. Gas Sci. Eng. 45, 165–188. [Google Scholar]
  • Mazyan W., Ahmadi A., Ahmed H., Hoorfar M. (2016) Market and technology assessment of natural gas processing: A review, J. Nat. Gas Sci. Eng. 30, 487–514. [Google Scholar]
  • Khan M.S., Lee S., Lee M. (2012) Optimization of single mixed refrigerant natural gas liquefaction plant with nonlinear programming, Asia-Pacific J. Chem. Eng. 7, S62–S70. [CrossRef] [Google Scholar]
  • Lee S., Long N.V.D., Lee M. (2012) Design and optimization of natural gas liquefaction and recovery processes for offshore floating liquefied natural gas plants, Ind. Eng. Chem. Res. 51, 30, 10021–10030. [Google Scholar]
  • Lim W., Choi K., Moon I. (2013) Current status and perspectives of liquefied natural gas (LNG) plant design, Ind. Eng. Chem. Res. 52, 9, 3065–3088. [Google Scholar]
  • Shirazi M.M.H., Mowla D. (2010) Energy optimization for liquefaction process of natural gas in peak shaving plant, Energy 35, 7, 2878–2885. [CrossRef] [Google Scholar]
  • Khan M.S., Lee M. (2013) Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints, Energy 49, 146–155. [CrossRef] [EDP Sciences] [Google Scholar]
  • Moein P., Sarmad M., Ebrahimi H., Zare M., Pakseresht S., Vakili S.Z. (2015) APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: analysis and optimization, J. Nat. Gas Sci. Eng. 26, 470–479. [Google Scholar]
  • Lee I., Moon I. (2016) Total cost optimization of a single mixed refrigerant process based on equipment cost and life expectancy, Ind. Eng. Chem. Res. 55, 39, 10336–10343. [Google Scholar]
  • Alabdulkarem A., Mortazavi A., Hwang Y., Radermacher R., Rogers P. (2011) Optimization of propane pre-cooled mixed refrigerant LNG plant, Appl. Therm. Eng. 31, 6–7, 1091–1098. [Google Scholar]
  • Wang M., Zhang J., Xu Q., Li K. (2011) Thermodynamic-analysis-based energy consumption minimization for natural gas liquefaction, Ind. Eng. Chem. Res. 50, 22, 12630–12640. [Google Scholar]
  • Wang M., Zhang J., Xu Q. (2012) Optimal design and operation of a C3MR refrigeration system for natural gas liquefaction, Comput. Chem. Eng. 39, 84–95. [Google Scholar]
  • Hwang J.H., Roh M.I., Lee K.Y. (2013) Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process, Comput. Chem. Eng. 49, 25–36. [Google Scholar]
  • Sanavandi H., Ziabasharhagh M. (2016) Design and comprehensive optimization of C3MR liquefaction natural gas cycle by considering operational constraints, J. Nat. Gas Sci. Eng. 29, 176–187. [Google Scholar]
  • Khan M.S., Karimi I.A., Lee M. (2016) Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction, Appl. Therm. Eng. 96, 320–329. [Google Scholar]
  • Sun H., Ding D.H., He M., Sun S.S. (2016) Simulation and optimization of AP-X process in a large-scale LNG plant, J. Nat. Gas Sci. Eng. 32, 380–389. [Google Scholar]
  • Ding H., Sun H., Sun S., Chen C. (2017) Analysis and optimization of a mixed fluid cascade (MFC) process, Cryogenics 83, 35–49. [Google Scholar]
  • Nawaz A., Qyyum M.A., Qadeer K., Khan M.S., Ahmad A., Lee S., Lee M. (2019) Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: Overall compression power reduction and exergy loss analysis, Int. J. Ref. 104, 189–200. [CrossRef] [Google Scholar]
  • He T., Liu Z., Ju Y., Parvez A.M. (2019) A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant, Energy 167, 1–12. [CrossRef] [Google Scholar]
  • Vatani A., Mehrpooya M., Tirandazi B. (2013) A novel process configuration for co-production of NGL and LNG with low energy requirement, Chem. Eng. Proc. Proc. Intens. 63, 16–24. [CrossRef] [Google Scholar]
  • He T., Ju Y. (2014) Design and optimization of a novel mixed refrigerant cycle integrated with NGL recovery process for small-scale LNG plant, Ind. Eng. Chem. Res. 53, 13, 5545–5553. [Google Scholar]
  • Khan M.S., Chaniago Y.D., Getu M., Lee M. (2014) Energy saving opportunities in integrated NGL/LNG schemes exploiting: Thermal-coupling common-utilities and process knowledge, Chem. Eng. Proc. Proc. Intens. 82, 54–64. [CrossRef] [Google Scholar]
  • Mehrpooya M., Hossieni M., Vatani A. (2014) Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL, Ind. Eng. Chem. Res. 53, 45, 17705–17721. [Google Scholar]
  • Uwitonze H., Lee I., Hwang K.S. (2016) Alternatives of integrated processes for coproduction of LNG and NGLs recovery, Chem. Eng. Proc. Proc. Intens. 107, 157–167. [CrossRef] [Google Scholar]
  • Ghorbani B., Hamedi M.H., Amidpour M. (2016) Development and optimization of an integrated process configuration for natural gas liquefaction (LNG) and natural gas liquids (NGL) recovery with a nitrogen rejection unit (NRU), J. Nat. Gas Sci. Eng. 34, 590–603. [Google Scholar]
  • Ghorbani B., Shirmohammadi R., Mehrpooya M. (2018) A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles–Economic and exergy analyses, Appl. Therm. Eng. 132, 283–295. [Google Scholar]
  • Ghorbani B., Hamedi M.H., Amidpour M., Shirmohammadi R. (2017) Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit, Int. J. Ref. 77, 20–38. [CrossRef] [Google Scholar]
  • Ghorbani B., Mehrpooya M., Shirmohammadi R., Hamedi M.H. (2018) A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process, J. Cleaner Prod. 179, 495–514. [CrossRef] [Google Scholar]
  • EIA (2019) Henry Hub Natural Gas Spot Price, (accessed 16 November. [Google Scholar]
  • METI, Spot LNG Price Statistics, (accessed 16 November 2019). [Google Scholar]
  • Jiang H., Zhang S., Jing J., Zhu C. (2019) Thermodynamic and economic analysis of ethane recovery processes based on rich gas, Appl. Therm. Eng. 148, 105–119. [Google Scholar]
  • Seider W.D., Seader J.D., Lewin D.R. (2009) Product and process design principles: synthesis, analysis and evaluation, Wiley, USA, pp. 534–601. [Google Scholar]
  • Ku N.K., Lee J.C., Roh M.I., Hwang J.H., Lee K.Y. (2012) Multi-floor layout for the liquefaction process systems of LNG FPSO using the Optimization Technique, J. Soc. Naval Arch. Korea 49, 1, 68–78. [CrossRef] [Google Scholar]
  • Song Q., Zhang J.P., Zhao Z., Luo J.L., Wang Q., Chen G.M. (2019) Development of natural gas liquefaction processes using mixed refrigerants: a review of featured process configurations and performance, J. Zhejiang Univ-Sci A 20, 10, 727–780. [CrossRef] [Google Scholar]
  • Ansarinasab H., Mehrpooya M. (2017) Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle, Appl. Therm. Eng. 114, 719–732. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.