Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 19
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2020008
Published online 31 March 2020
  • Adam A., Percival J., Salinas P., de Loubens R., Pain C., Muggeridge A., Jackson M. (2017) Dynamic mesh adaptivity for immiscible viscous fingering, in: SPE Reservoir Simulation Conference, Society of Petroleum Engineers, Montgomery, TX, USA. [Google Scholar]
  • Al-Shakry B., Shiran B.S., Skauge T., Skauge A. (2018) Enhanced oil recovery by polymer flooding: Optimizing polymer injectivity, in: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, SPE, Dammam, Saudi Arabia. [Google Scholar]
  • Artus V., Noetinger B., Ricard L. (2004) Dynamics of the water-oil fron for two-phase, immiscible flow in heterogeneous porous media, Transp. Porous Media 56, 3, 283–303. [Google Scholar]
  • Asghari K., Nakutnyy P. (2008) Experimental results of polymer flooding of heavy oil reservoirs, in: Petroleum Society’s 59th Annual technical meeting, Society of Petroleum Engineer, Calgary, AB, Canada. [Google Scholar]
  • Blunt M.J. (2001) Flow in porous media – pore-network models and multiphase flow, Curr. Opin. Colloid Interface Sci. 6, 197–207. [Google Scholar]
  • Bondino I., Nguyen R., Hamon G., Ormehaug P., Skauge A., Jouenne S. (2011) Tertiary polymer flooding in extra-heavy oil: An investigation using 1D and 2D experiments, core scale simulation and pore scale network models, in: Paper SCA2011-1063 presented at the International Symposium of the Society of Core Analyst held in Austin, TX, 2011. [Google Scholar]
  • Bouquet S., Douarche F., Roggero F., Leray S. (2019) Characterization of viscous fingering and channeling for the assessment of polymer-based heavy oil displacements, Transp. Porous Media 131, 873–906. [Google Scholar]
  • Bourgeois M., Hild J.-C., Bursaux R. (2019) Impact of upscaling on numerical estimation of polymer increments, in: SPE EUROPEC 2019 81st EAGE Annual Conference & Exhibition, Society of Petroleum Engineers, London, UK. [Google Scholar]
  • Broseta D., Medjahed F., Lecourtier J., Robin M. (1995) Polymer adsorption/retention in porous media: Effects of core wettability and residual oil, SPE Adv. Technol. Ser. 3, 1, 104–112. [Google Scholar]
  • Brown W. (1957) The mobility of connate water during water flood, Petrol. Trans. AIME 210, 190–195. [CrossRef] [Google Scholar]
  • Buchgraber M., Clemens T., Castanier L.M., Kovscek A.R. (2011) A microvisual study of the displacement of viscous oil by polymer solutions, SPE Res. Eval. Eng. 14, 269–280. [CrossRef] [Google Scholar]
  • Buckley S., Leverett M. (1942) Mechanism of fluid displacements in sands, Trans. AIME 146, 1, 107–116. [CrossRef] [Google Scholar]
  • Chauveteau G. (1981) Molecular interpretation of several different properties of flow of coiled polymer solutions through porous media in oil recovery, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, San Antonio, TX, USA. [Google Scholar]
  • Chen G., Li Y., Wang J., Ma M., Lu K., Jin G., Sun H. (2008) An applied chemical flooding simulator and its application in daqing oilfield, in: SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Chen G., Shao Z., Zhang X., Ma M., Lu K., Wei C. (2011) History matching method for high concentration viscoelasticity polymer flood pilot in daqing oilfield, in: SPE Enhanced Oil Recovery Conference, Society of Petroleum Engineers, Kuala Lumpur, Malaysia. [Google Scholar]
  • Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Monograph Series, Society of Petroleum Engineers, Richardson, TX. [Google Scholar]
  • D’Angelo M.V., Fontana E., Chertcoff R., Rosen M. (2003) Retention phenomena in non-Newtonian fluids flow, Phys. A Stat. Mech. Appl. 327, 44–48. [CrossRef] [Google Scholar]
  • de Loubens R., Vaillant G., Regaieg J., Yang J., Moncorge A., Fabbri C., Darche G. (2018) Numerical modeling of unstable waterfloods and tertiary polymer floods into highly viscous oil, SPE J. 23, 1909–1928. [CrossRef] [Google Scholar]
  • Delamaide E. (2016) Comparison of primary, secondary and tertiary polymer flood in heavy oil – field results, in: SPE Trinidadand Tobago Section Energy Resources Conference, Society of Petroleum Engineers, Port of Spain. [Google Scholar]
  • Delamaide E., Corlay P. (1994) Daqing oil field: The success of two pilots initiates first extension of polymer injection in a giant oil field, in: SPE/DOE Ninth Symposium on Improved Oil Recovery, Society of Petroleum Enigneers, Tulsa, Ok. [Google Scholar]
  • Delamaide E., Zaitoun A., Renard G., Tabary R. (2013) Pelican lake field: First successful application of polymer flooding in a heavy oil reservoir, in: Paper SPE 165234, Presented at the SPE Enhance Oil Recovery Conference, Kuala Lumpur, Malaysia, 2013. [Google Scholar]
  • Delshad M., Pope G.A., Sepehrnoori K. (2000) Volume II: Technical documentation for UTCHEM 2013_8: A three-dimensional chemical flood simulator, Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering, University of Texas, Austin, TX. [Google Scholar]
  • Doorwar S., Mohanty K.K. (2011) Viscous fingering during non-thermal heavy oil recovery, in: SPE Annual Technical Conference and Exhibition, 30 October–2 November, Denver, CO, USA, SPE-146841. [Google Scholar]
  • Doorwar S., Mohanty K. (2014) Polymer flood of viscous oil in complex carbonates, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Doorwar S., Mohanty K. (2017) Viscous-fingering function for unstable immiscible flows, SPE J. 22, 19–31. [CrossRef] [Google Scholar]
  • Fabbri C., Cottin C., Jimenez J., Nguyen M., Hourcq S., Bourgeois M., Hamon G. (2014) Secondary and tertiary polymer flooding in extra-heavy oil: Reservoir conditions measurements – performance comparison, in: Paper IPTC-17703, presented at the International Petroleum Technology Conference, Society of Petroleum Engineers, Doha, Qatar. [Google Scholar]
  • Fabbri C., de Loubens R., Skauge A., Ormehaug P., Vik B., Bourgeois M., Morel D., Hamon G. (2015) Comparison of history-matched water flood, tertiary polymer flood relative permeabilities and evidence of hysteresis during tertiary polymer flood in very viscous oils, in: SPE Enhanced Oil Recovery Conference, Society of Petroleum Engineers, Kuala Lumpur, Malaysia. [Google Scholar]
  • Fabbri C., Romero C., Aubertin F., Nguyen M., Hourcq S., Hamon G. (2013) Secondary polymer flooding in extra-heavy oil: Gaining information on polymer-oil relative permeabilities, in: Paper SPE 165237, paper prepared for the SPE Enhanced Oil Recovery Conference, Kuala Lumpur. [Google Scholar]
  • Fransham P.B., Jelen J. (1987) Displacement of heavy oil visualized by CAT Scan, J. Can. Pet. Tech. 26, 42–47. [CrossRef] [Google Scholar]
  • Gao C. (2011) Advances of polymer flood in heavy oil recovery, in: Paper SPE 150384, Prepared for the SPE Heavy Oil Conference and Exhibition, Kuwait City, Kuwait. [Google Scholar]
  • Gogarty W. (1967) Mobility control with polymer solutions, Soc. Pet. Eng. J. 7, 162–173. [CrossRef] [Google Scholar]
  • Grattoni C., Luckham P., Jing X., Norman L., Zimmerman R. (2004) Polymer as relative permeability modifiers: Adsorption and the dynamic formation of thick polyacrylamide layers, J. Pet. Sci. Eng. 45, 233–245. [Google Scholar]
  • Green D., Willhite P. (1998) Enhanced oil recovery, Society of Petroleum Engineers, Richardson, Texas, USA. [Google Scholar]
  • Hagoort J. (1974) Displacement stability of water drives in water-wet connate-water-bearing reservoirs, SPE J. 14, 1, 36–74. [Google Scholar]
  • Hassaizadeh S., Gray W. (1990) Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour. 13, 169–186. [Google Scholar]
  • Huh C., Pope G. (2008) Residual oil saturation from polymer flood: Laborator measurements and theoretical interpretation, in: SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Jadhunandan P., Morrow N. (1995) Effect of wettability on waterflood recovery for crude-oil/brine/rock systems, SPE Reserv. Eng. 10, 1, 40–46. [CrossRef] [Google Scholar]
  • Juarez-Morejon J.L., Bertin H., Omari A., Hamon G., Cottin C., Morel D., Romero C., Bourdarot G. (2018) A new approach to polymer flooding: Impact of the early polymer injection and wettability on final oil recovery, in: SPE Europec at 80th EAGE Conference and Exhibition, SPE, Copenhagen. [Google Scholar]
  • Kalaydjian F. (1990) Origin and quantification of coupling between relative permeabilities for two-phas flows in porous media, Transp. Porous Media 5, 215–229. [Google Scholar]
  • Land C. (1968) Calculation of imbibition relative permeability for two- and three-phase flow from rock properties, Soc. Pet. Eng. J. 8, 149–156. [CrossRef] [Google Scholar]
  • Lenormand R., Touboul E., Zarcone C. (1988) Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–167. [Google Scholar]
  • Lenormand R., Zarcone C., Sarr A. (1983) Mechanisms of the displacement of one fluid by another in a network of capillary ducts, J. Fluids Mech. 135, 337–353. [CrossRef] [Google Scholar]
  • Levitt D., Jouenne S., Bondino I., Gingras J., Bourrel M. (2011) The interpretation of polymer coreflood results for heavy oil, in: SPE Heavy Oil Conference and Exhibition, 12–14 December, Kuwait City, Kuwait. SPE150566. [Google Scholar]
  • Luo H., Delshad M., Pope G., Mohanty K.K. (2017) Interactions between viscous fingering and channeling for unstable water/polymer floods in heavy oil reservoirs, in: SPE Reservoir Simulation Conference, SPE, Montgomery, TX, USA. [Google Scholar]
  • Luo H., Mohanty K.K., Delshad M., Pope G.A. (2016) Modeling and upscaling unstable water and polymer floods: Dynamic characterization of the effective finger zone, in: SPE Improved Oil Recovery Conference, SPE, Tulsa, OK, USA. [Google Scholar]
  • Masalmeh S., AlSumaiti A., Gaillard N., Daguerre F., Skauge T., Skauge A. (2019) Extending polymer flooding towards high-temperature and high-salinity reservoirs, in: Abu Dhabi International Petreoleum Exhibition & Conference, SPE, Abu Dhabi, UAE. [Google Scholar]
  • Muskat M. (1937) The flow of homogeneous fluids through porous media, McGraw – Hill Book Company, New York, NY. [Google Scholar]
  • Niessner J., Berge S., Hassanizadeh S. (2011) Comparison of two-phase Darcy’s law with a thermodynamically consistent approach, Transp. Porous Media 88, 133–148. [Google Scholar]
  • Ning S., Barnes J., Edwards R., Dunford K., Easthan K., Dandekar A., Zhang Y., Cercone D., Ciferno J. (2019) First ever polymer flood field pilot to enhance the recovery of heavy oils on Alaska’s north slope – polymer injection perfomance, in: Unconventional Resources Technology Conference, Society of Petroleum Engineers, Denver, CO. [Google Scholar]
  • Oren P.-E., Bakke S., Arntzen O. (1998) Extending predictive capabilities to network models, SPE J. 3, 324–336. [CrossRef] [Google Scholar]
  • Pancharoen M.T., Kovscek A. (2010) Inaccessible pore volume of associative polymer floods, in: SPE Improved Oil Recovery Symposium, Society of Petrolem Engineers, Tulsa, OK, USA. [Google Scholar]
  • Pandey A., Kumar M., Beliveau D., Corbishley D. (2008) Chemical flood simulation of laboratory corefloods for the Mangala field: Generating parameters for field scale simulation, in: SPE Symposium on Improved Oil Recevery, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Patacchini L., de Loubens R., Moncorgé A., Trouillaud A. (2014) Four-fluid-phase, fully implicit simulation of surfactant flooding, SPE Res. Eval. 17, 271–285. [CrossRef] [Google Scholar]
  • Riaz A., Tang G.Q., Tchelepi H., Kovscek A.R. (2007) Forced imbibitions in natural porous media: Comparison between experiments and continuum models, Phys. Rev. E 75, 036305. [Google Scholar]
  • Riaz A., Tchelepi H.A. (2004) Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation, Phys. Fluids 16, 4727–4737. [CrossRef] [Google Scholar]
  • Riaz A., Tchelepi H.A. (2006) Numerical simulation of immiscible two-phase flow in porous media, Phys. Fluids 18, 1, 014104. [CrossRef] [Google Scholar]
  • Saffman P., Taylor F. (1958) The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Royal Soc. 245, 312–329. [Google Scholar]
  • Seright R.S. (2017) How much polymer should be injected during a polymer flood? Review of previous and current practices, SPE J. 22, 1, 1–18. [CrossRef] [Google Scholar]
  • Seright R., Wang D., Lerner N., Nguyen A., Sabid J., Tochor R. (2018) Can 25-cp polymer solution efficiently displace 1,600-cp oil during polymer flooding? SPE J. 23, 2260–2278. [CrossRef] [Google Scholar]
  • Skauge A., Horgen T., Noremark B., Vik B. (2011) Experimental studies of unstable displacement in carbonate and sandstone material, in: Paper n°9880 presented at the EAGE IOR Symposium, Cambridge, UK. [Google Scholar]
  • Skauge A., Ormehaug P., Gurholt T., Vik B., Bondino I., Hamon G. (2012) 2-D visualisation of unstable waterflood and polymer flood for displacement of heavy oil, in: Paper SPE 154292, Presented at the 18th SPE Oil Recovery Symposium Held in Tulsa, OK, USA, 2012. [Google Scholar]
  • Skauge T., Skauge A., Salmo I.C., Ormehaug P.A., Al-Azri N., Wassing M., Glasbergen G., Van Wunnik J.N., Masalmeh S.K. (2016) Radial and linear polymer flow – influence on injectivity, in: SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Skauge A., Sorbie K., Ormehaug P., Skauge T. (2009) Experimental and numerical modeling studies of viscous unstable displacement, in: Paper A 28, Presented at the 15th European Symposium on Improved Oil Recovery – Paris, France, April 27–29, 2012. [Google Scholar]
  • Skauge T., Vik B., Ormehaug P., Jatten B., Kippe V., Skjevrak I., Standnes D., Uleberg K., Skauge A. (2014) Polymer flood at adverse mobility ratio in 2D flow by X-ray visualization, in: Paper SPE 169740, Presented at the SPE EOR Conference at Oil and Gas West Asia held in Muscat, Oman. [Google Scholar]
  • Skauge A., Zamani N., Jacobsen J., Shiran B., Al-Shakry B., Skauge T. (2018) Polymer flow in porous media: Relevance to enhanced oil recovery, Colloids Interf. 2, 2–27. [CrossRef] [Google Scholar]
  • Sorbie K.S., Seright R.S. (1992) Gel placement in heterogeneous systems with crossflow, in: SPE/DOE Enhanced Oil Recovery Symposium, Society of Petroleum Engineers, Tulsa, OK, USA. [Google Scholar]
  • Sorbie K., Skauge A. (2019) Mobilization of by-passed oil by viscous crossflow in EOR processes, in: IOR 2019 – 20th European Symposium on Improved Oil Recovery, EAGE, Pau. [Google Scholar]
  • van der Post N., Masalmeh S.K., Coenen J.G., van der Gijp K.H., Maas J.G. (2000) Relative permeability, hysteresis and I-Sw measurements on a carbonate prospect, in: 14th International Symposium of the Society of Core Analyst, Abu Dhabi. [Google Scholar]
  • Vik B., Kedir A., Kippe V., Sandengen K., Skauge T., Solbakken Z.D. (2018) Viscous oil revovery by polymer injection; impact of in-situ polymer rheology on water front stabilization, in: SPE Europec featured at 20th EAGE Conference and Exhibition, Society of Petroleum Engineers, Copenhagem, Denmark. [Google Scholar]
  • Wang J., Dong M. (2009) Optimum effective viscosity of polymer solution for improving heavy oil recovery, J. Pet Sci. Eng. 67, 155–158. [Google Scholar]
  • Wassmuth F., Arnold W., Green K., Cameron N. (2009) Polymer flood application to improve heavy oil recovery at East Bodo, JCPT 48, 2, 55–61. [CrossRef] [Google Scholar]
  • Xu B., Kamath J., Yorsos Y., Lee S. (1999) Use of pore-network models to simulate laboratory corefloods in a heterogeneous carbonate sample, SPE J. 4, 179–186. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.