- Abdehagh N., Tezel F.H., Thibault J. (2014) Separation techniques in butanol production: Challenges and developments, Biomass Bioenergy 60, 222–246. [Google Scholar]
- Ahmetović E., Martín M., Grossmann I.E. (2010) Optimization of energy and water consumption in corn-based ethanol plants, Ind. Eng. Chem. Res. 49, 17, 7972–7982. [Google Scholar]
- Ballerini D. (2006) Chapitre 6 - La transformation de la biomasse lignocellulosique par voie biochimique, in: Les Biocarburants : Etat des lieux, perspectives et enjeux du développement, IFP Publication, Éd. Technip, Paris, pp. 261–306. [Google Scholar]
- Belletante S., Montastruc L., Negny S., Domenech S. (2016) Optimal design of an efficient, profitable and sustainable biorefinery producing acetone, butanl and ethanol: Influence of the in-situ separation on the purification structure, Biochemical Eng. J. 116, 195–209. [CrossRef] [Google Scholar]
- Cai D., Zhang T., Zheng J., Chang Z., Wang Z., Qin P., Tan T. (2013) Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process, Bioresour. Technol. 145, 97–102. [Google Scholar]
- Cherubini F. (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Convers. Manag. 51, 7, 1412–1421. [Google Scholar]
- Čuček L., Martín M., Grossmann I.E., Kravanja Z. (2011) Energy, water and process technologies integration for the simultaneous production of ethanol and food from the entire corn plant, Comput. Chem. Eng. 35, 8, 1547–1557. [Google Scholar]
- Domine M.E., Marinas A., Sheldon R.A. (2015) Biomass valorization into fuels, energy, materials and chemicals (UBIOCHEM-IV), Catal. Today 257, Part 2, 151–153. [Google Scholar]
- Ezeji T.C., Qureshi N., Blaschek H.P. (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping, World J. Microbiol. Biotechnol. 19, 6, 595–603. [Google Scholar]
- Formanek J., Mackie R., Blaschek H.P. (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose, Appl. Environ. Microbiol. 63, 6, 2306–2310. [Google Scholar]
- Geraili A., Sharma P., Romagnoli J.A. (2014) A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: Applications to biorefineries, Comput. Chem. Eng. 61, 102–117. [Google Scholar]
- Grossmann I.E., Martín M. (2010) Energy and water optimization in biofuel plants, Chin. J. Chem. Eng. 18, 6, 914–922. [CrossRef] [Google Scholar]
- Haghighi Mood S., Hossein Golfeshan A., Tabatabaei M., Salehi Jouzani G., Najafi G.H., Gholami M., Ardjmand M. (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sustain. Energy Rev. 27, 77–93. [CrossRef] [Google Scholar]
- Hamelinck C.N., Van Hooijdonk G., Faaij A.P. (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, Biomass Bioenergy 28, 4, 384–410. [Google Scholar]
- Harmsen P.F.H., Hackmann M.M., Bos H.L. (2014) Green building blocks for bio-based plastics, Biofuels Bioprod. Biorefining 8, 3, 306–324. [CrossRef] [Google Scholar]
- Huang H.-J., Ramaswamy S., Liu Y. (2014) Separation and purification of biobutanol during bioconversion of biomass, Sep. Purif. Technol. 132, 513–540. [Google Scholar]
- Kayaalp U. (2013) Two stage ABE fermentation with in situ pervaporation and high cell density, Dissertation, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa. [Google Scholar]
- Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. Chem. Res. 48, 8, 3713–3729. [Google Scholar]
- Kumar M., Goyal Y., Sarkar A., Gayen K. (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks, Appl. Energy 93, 193–204. [Google Scholar]
- Law L. (2010) Production of biobutanol from white grape pomace by Clostridium saccharobutylicum using submerged fermentation, Thesis, Auckland University of Technology. [Google Scholar]
- Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. (2008) Fermentative butanol production by Clostridia, Biotechnol. Bioeng. 101, 2, 209–228. [CrossRef] [PubMed] [Google Scholar]
- Liew S.T., Arbakariya A., Rosfarizan M., Raha A.R. (2006) Production of Solvent (acetone-butanol-ethanol) in Continuous Fermentation by Clostridium saccharobutylicum DSM 13864 Using Gelatinised Sago Starch as a Carbon Source, Malays. J. Microbiol. 2, 2, 42–50. [Google Scholar]
- Liu G., Wei W., Wu H., Dong X., Jiang M., Jin W. (2011) Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process, J. Membr. Sci. 373, 1–2, 121–129. [CrossRef] [Google Scholar]
- Lu C. (2011) Butanol Production from Lignocellulosic Feedstocks by Acetone-Butanol-Ethanol Fermentation with Integrated Product Recovery, PhD Thesis, The Ohio State University. [Google Scholar]
- Moncada J., Matallana L.G., Cardona C.A. (2013) Selection of process pathways for biorefinery design using optimization tools: A Colombian case for conversion of sugarcane bagasse to ethanol, Poly-3-hydroxybutyrate (PHB), and energy, Ind. Eng. Chem. Res. 52, 7, 4132–4145. [Google Scholar]
- Nielsen D.R., Prather K.J. (2009) In situ product recovery of n-butanol using polymeric resins, Biotechnol. Bioeng. 102, 3, 811–821. [CrossRef] [PubMed] [Google Scholar]
- Niemistö J., Saavalainen P., Isomäki R., Kolli T., Huuhtanen M., Keiski R.L. (2013) Biobutanol production from biomass, in: V.K. Gupta, M.G. Tuohy (eds), Biofuel technologies, Springer, Berlin Heidelberg, pp. 443–470. [CrossRef] [Google Scholar]
- Pham V., El-Halwagi M. (2012) Process synthesis and optimization of biorefinery configurations, AIChE J. 58, 4, 1212–1221. [Google Scholar]
- Qureshi N., Blaschek H.P. (2001) Recovery of butanol from fermentation broth by gas stripping, Renew. Energy 22, 4, 557–564. [Google Scholar]
- Qureshi N., Maddox I.S. (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction, J. Ferment. Bioeng. 80, 2, 185–189. [CrossRef] [Google Scholar]
- Qureshi N., Hughes S., Maddox I.S., Cotta M.A. (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption, Bioprocess Biosyst. Eng. 27, 4, 215–222. [CrossRef] [PubMed] [Google Scholar]
- Qureshi N., Cotta M.A., Saha B.C. (2014) Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors, Food Bioprod. Process. 92, 3, 298–308. [CrossRef] [Google Scholar]
- Rafione T., Marinova M., Montastruc L., Paris J. (2014) The green integrated forest biorefinery: An innovative concept for the pulp and paper mills, Applied Thermal Engineering 73, 1, 74–81. [Google Scholar]
- Sammons N., Eden M., Yuan W., Cullinan H., Aksoy B. (2007) A flexible framework for optimal biorefinery product allocation, Environ. Prog. 26, 4, 349–354. [CrossRef] [Google Scholar]
- Sammons N.E. Jr, Yuan W., Eden M.R., Aksoy B., Cullinan H.T. (2008) Optimal biorefinery product allocation by combining process and economic modeling, Chem. Eng. Res. Des. 86, 7, 800–808. [Google Scholar]
- Soni B.K., Das D.K., Ghose T.K. (1987) Inhibitory factors involved in acetone-butanol fermentation by Clostridium saccharoperbutylacetonicum, Curr. Microbiol. 16, 2, 61–67. [Google Scholar]
- Soucaille P., Joliff G., Izard A., Goma G. (1987) Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum, Curr. Microbiol. 14, 295–299. [Google Scholar]
- Stenberg K., Tengborg C., Galbe M., Zacchi G. (1998) Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production, J. Chem. Technol. Biotechnol. 71, 4, 299–308. [Google Scholar]
- Tanaka S., Tashiro Y., Kobayashi G., Ikegami T., Negishi H., Sakaki K. (2012) Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1–4 with 1-dodecanol as the extractant, Bioresour. Technol. 116, 448–452. [Google Scholar]
- Tashiro Y., Takeda K., Kobayashi G., Sonomoto K., Ishizaki A., Yoshino S. (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1–4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method, J. Biosci. Bioeng. 98, 4, 263–268. [CrossRef] [PubMed] [Google Scholar]
- Van Hecke W., Hofmann T., De Wever H. (2013) Pervaporative recovery of ABE during continuous cultivation: Enhancement of performance, Bioresour. Technol. 129, 421–429. [Google Scholar]
- Werpy T., Petersen G. (2004) Top value added chemicals from biomass: Volume I – Results of screening for potential candidates from sugars and synthesis gas; DOE/GO-102004-1992, National Renewable Energy Lab, Golden, CO, USA. [CrossRef] [Google Scholar]
- Wyman C.E., Decker S.R., Himmel M.E., Brady J.W., Skopec C.E., et al. (2005) Hydrolysis of cellulose and hemicellulose, Polysacch. Struct. Divers. Funct. Versatility 1, 1023–1062. [Google Scholar]
- Xue C., Zhao J., Liu F., Lu C., Yang S.-T., Bai F.-W. (2013) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery, Bioresour. Technol. 135, 396–402. [Google Scholar]
- Xue C., Zhao J.-B., Chen L.-J., Bai F.-W., Yang S.-T., Sun J.-X. (2014) Integrated butanol recovery for an advanced biofuel: Current state and prospects, Appl. Microbiol. Biotechnol. 98, 8, 3463–3474. [CrossRef] [PubMed] [Google Scholar]
- Yee T.E., Grossmann I.E. (1990) Simultaneous optimization models for heat integration–II. Heat exchanger network synthesis, Computers Chem. Eng. 14, 10, 1165–1184. [CrossRef] [Google Scholar]
- Yen H.-W., Wang Y.-C. (2013) The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone–butanol–ethanol), Bioresour. Technol. 145, 224–228. [Google Scholar]
- Yerushalmi L. (1985) Physiological aspects of the acetone-butanol fermentation, PHD Thesis, McGill University, Montreal, Canada, 430 p. [Google Scholar]
- Zondervan E., Nawaz M., de Haan A.B., Woodley J.M., Gani R. (2011) Optimal design of a multi-product biorefinery system, Comput. Chem. Eng. 35, 9, 1752–1766. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2516/ogst/2020002 | |
Published online | 24 February 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.